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CHAPTER I

INTRODUCTION

U

Discrete data sampling at the Nyquist rate (or better) for the

reconstruction of continuous waveforms is well known. However, the

application of the sampling theorem [1,2] is often limited to one

dimensional problems. This report will explore an application of the N

dimensional sampling theorem to inverse scattering. More specifically,

the application is on the reconstruction of the spatial impulse response

of a finite object using different sampling criteria. The different

aspects of the N dimensional sampling theorem are investigated to

produce efficient sampling criteria in the wave number space such that

the spatial impulse response of a finite object is sufficiently

characterized. In addition, the impulse response concept is extended to

create possibly an image of the object.

The impulse response [3,4] is important both in target

identification and imaging. The impulse response concept, as most

'- people understand, is a far field one dimensional time response concept.

This time response waveform when applied in scattering can be plotted on

a distance abscissa after the factor due to the speed of the wave is

o,



accounted for. If one can obtain the frequency responses of a finite

object for all aspect angles over the 4,! solid angle, the inverse

Fourier transform of the total frequency response into the spatial

domain forms an image which is called the spatial impulse response.

i.e., the impulse response of a finite object at x is

f1x _O ji-
f 2 x f F(k)eJ dk ii

100

where F(k) = the far field frequency response of a finite

object at k in the space-frequency domain

x (x1 , x2 , x3 )

= (kJ, k2 , k3 )

dk = dkI dk2 dk3

* The three dimensional function f(x) for all x's in the x-space

constitutes an image called the spatial impulse response.

The spatial impluse response can be divided into two types - the

monostatic and the bistatic. The monostatic spatial impulse response

uses monostatic frequency responses of all aspect angles. The bistatic

spatial impulse response uses the bistatic frequency responses of all

receiving aspect angles. The spatial, two dimensional, or one

dimensional impulse responses discussed hereafter will all be referring

to the monostatic case unless otherwise stated. The data used are also

. monostatic data. However, the theory to be discussed is also applicable

to bistatic cases. Furthermore, only two dimensional frequency data are

2



used in the discussion, so this report will emphasize the two

dimensional impulse response only.

In the introduction, the theme and purpose of this report are

(efined. A brief description on each of the following chapters is also

included. In Chapter 11, the impulse response, sampling theorem and

their relationship are discussed. The basics of the one dimensional

impulse response concept and the one dimensional sampling theorem are

first reviewed. Using the idea of the settling time, one can relate the

impulse response to the sampling theorem. Then the one dimensional

impulse response concept is extended to the three dimensional space.

Lewis and Bojarski 's [:5,6] work in the area is also briefly contrasted.

* A decision rule based on Petersen and Middleton's [7] definition of

sampling efficiency is introduced so that one can decide on the more

p efficient sampling grid. There is also a discussion on Petersen and

Middleton's N dimensional sampling theorem and its different forms which

depend on the different types of sampling techniques. Then Mensa

et al.'s [8] polar transformation and single frequency approach to two
dimensional Fourier transform is rederived. Their approach presents a

new perspective to the Nyquist sampling criteria.

Some practical aspects of the theory in Chapter II are considered

in Chapter III. Even though the discussion is in one dimension, it is

also applicable to two and three dimensional analyses. The real signal

requirement on Fourier transform is rederived. This helps to clarify

h the problem of non-zero imaginary parts during data processing. Using

the sampling theorem interpolation scheme, the frequency bandwidth's

3



relationship to target size and spatial resolution is considered. A

*. common problem that may be easily overlooked in data processing is the

* periodicity of the Fourier series representation to solve the Fourier

* integral. This is also restated in the last part of Chapter 11.

In order to build some confidence in the different forms of

Petersen and Middleton's sampling criteria, results of interpolating one

"' dimensional impulse responses are presented in Chapter IV. The

.- interpolation scheme used is the same as in the sampling theorem, except

the infinite summation is a finite summation. The interpolated results

using one dimensional sampled data appear first in the chapter to

preview the interpolation via two dimensional sampled data. Later, an

example is chosen to compare the efficiency of different sampling grids.

Two dimensional impulse responses computed using discrete two

dimensional Fourier transform are compared with results using Mensa et

• al.'s approach to Fourier transformation in Chapter V. The potential of

- using the spatial impulse response for target imaging is explored in the

last part of the report.

i".
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CHAPTER 11

THEORY

Some of the basic concepts on impulse response and one dimensional

sampling theorem are individually reviewed. Then the two concepts are

combined and extended to three dimensional space. The different aspects

of N dimensional sampling theorem are introduced. Finally, Mensa

et al.'s approach to two dimensional Fourier transform and sampling is

also discussed.

If an impulsive electric field is incident on a target, the

normalized far zone time domain scattering will be the impulse response

of the target at that particular aspect angle and polarization. The

approach to be used herein to obtain the impulse response is similar to

deconvolution. First, the scattered field (a complex function of

frequency) is divided by the spectrum of the incident wave. This result

is then inverse Fourier transformed to produce the desired impulse

response.

5



Let f(t) be the input signal in time

F(w) be the input frequency spectrum .

h(t) be the impulse response of the target

H(w) be the frequency response of the target

c(t) be the output signal in time

C(ci) be the output frequency spectrum

F (w) Hw C(W)

Figure 2-1. Block diagram depicting system analogy

6
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By the convolution theorem of Fourier transform theory [2]5
C(w) = F(w)H(w) (2-I

<=> H(w) = CM (2-2)
I

Fourier transformed,

"1 CM •~
nt = 7T  I -F( e dw (2-3)

According to Kennaugh and Moffatt [3], the impulse response will

decay exponentially for large values of (t -

where t -time

I r -distance between observation point and the origin

c -speed of light

Therefore, one can define a settling time when the impulse response has

its amplitude embedded in the noise level. For all practical purposes,

the settling time will be the end of the impulse response. Thus, the

impulse response is a time limited signal. From the sampling theorem

[1,2]: "A time limited signal can be reproduced from its discrete
a.-

frequency values, if it is sampled over the complete frequency domain

using the Nyquist rate." As a consequence, the impulse response may be

reproduced by measuring its frequency spectrum at the Nyquist sampling

rate (fs). (i.e., fs 4 1/2T; where the signal is limited in time to

±T)

7
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Or, if

f(t) = 0 Itl T

then

ni) sin(wT - n7)
F(w)-) FT - nir (2-4)

n -

where the samples are taken at w : n7/T, but n is taken from -= to =,

Now, let's consider the concept of marching in time. An impulsive

magnetic field incident upon a solid conducting body, sets up current -

' 3 on the surface. As a result, 3 = n x RT will start generating a

scattering field in all directions. After the wave passes over the

target, the current created decays exponentially. The scattered field

* behaves similarly. At one aspect angle, the time, where the onset of

" the scattered waveform is observed, corresponding to the time required

* for the wave to reach the initial scattering point on the target and _

* return to the radar, is designated as the initial time Ti. The time

• -(Tf) before the final exponential decay occurrence defines the end of

-the target.

Let x be the length of the object along the line of sight

at one aspect angle

At be the time difference between the initial time and

the final time at that aspect angle

- c be the speed of light

8
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At = Tf -Ti

I
then,

2x = cAt

x = c(Tf - Ti) (2-b)

Any physical object has finite dimensions. If it is located in a

rectangular coordinate system (x: xl,x 2 ,x3 ), then it can be said to

have limited dimensions in the x coordinates. Namely, the object is

confined by:

, a b
xI <x I < x1

a b

xa< < b

S3 <x 3 <x 3

a a a b b bwhere x1 , x2 , x3 , x1 , x2 , x3 are some real constants.

The confinement of an object in space is equivalent in saying its

spatial impulse response is time limited, as the impulse response has a

settling time for every aspect angle. Using the above argument, if the

impulse response measurement is obtained at all aspect angles, then an

image of the object may be generated from the data.

9
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The approach taken here is a little different from Lewis-Bojarski's

work [5,6]. They use physical optics approximation to arrive at the

* formulation for imaging. In another words, they do not use the

- information on the shadowed side. The object is illuminated in every

* direction. Information on the 4-n solid angle is required, even though

measurement on the complete solid frequency sphere is difficult to be

implemented. With the help of the N dimensional sampling theorem, which

* is described later, the implementation becomes more practical. If one

* requires information over a finite frequency range, then the infinite

* number of samples over the 4nr solid angle is converted to a finite

number of samples. The N dimensional sampling theorem defines a

sufficient sampling criterion to characterize space limited or wave

number limited signal. Thus, the response at any point may be

* interpolated from the sampled data using the reconstruction scheme

* defined by the sampling theorem.

To employ the sampling theorem, the signal muist be limited in time

* or frequency. In this case, the object is limited in three dimensions.

* The transformed space will be the wave number space. Ideally, the

frequency response or the k-space response can be reproduced by sampling

in the k-space discretely but over the infinite space. To obtain the

* spatial impulse response, a three dimensional inverse Fourier transform

is performed on the k-space response. -

10

* . **



While there is only one sampling theorem, there are different forms

of the sampling that satisfy the sampling theorem. In one dimension,

- the different forms depend on how the time limited signal or the

frequency limited signal is assumed to repeat itself. In three

dimensions, the forms depend on how the target is placed in the

reference plane (xl, x2, x3), and how the target's images are repeated

in the three dimensional space. Theoretically, there are infinitely

different forms of the sampling, as there is an infinite number of

different target shapes, sizes and orientations. One would prefer a

general sampling scheme that is applicable to all, or at least most,

objects with any orientation. This is where the canonical containment

cell fits in. These canonical containment cells are usually of simple

geometries so that a wide variety of targets can be confined by their

boundaries. Examples of these simple geometries are sphere,

parallelepiped, ellipsoid, finite cylinder. Thus the forms of the

sampling depend on the choice of the canonical confinement units and
m
. how the unit's images are repeated in the three dimensional space.

Two simple canonical units to be treated in this report are the

sphere and parallelepiped. A decision rule between these two types of

units will be discussed. First, the concept of sampling efficiency will

be defined. The following efficiency formula is a modified version of

the original formula defined by Petersen and Middleton [7].

{1

F"
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CONSERVATIVE ESTIMATE OF THE VOLUME OF THE OBJECT
s = VOLUME OF THE SMALLEST SPHERE ENCLOSING THE OBJECT (2-6)

= Efficiency for isotropic sampling

CONSERVATIVE ESTIMATE OF THE VOLUME OF THE OBJECT
p= VOLUME OF THE SMALLEST PARALLELEPIPED ENCLOSING THE OBJECT

(2-7)
- Efficiency for parallelepipedic sampling

Rule:

ns > np use spherical confinement

(2-8)

ns < use parallelepiped confinement

The N dimensional sampling theorem obtained by Petersen and

Middleton [7] is: "A function F(k) whose inverse Fourier transform f(x)

*vanishes over all but a finite portion in x-space can be everywhere

*. reproduced from its sampled values taken over a lattice of points

12
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{ -

llUl + 12u2 + ... + inun; 11, 12, I., in = 0, ± 1, ± 2, oo. provided

that the vectors {uj} are small enough to ensure non-overlapping of the

%; x-space signal f(x) with its images on a periodic lattice defined by the

vectors Ivi } which vi = 2i

Let's consider the non-overlapping condition in the N dimensional

sampling theorem. The requirement is 'non-overlapping' of the object

cell f(x) with its images on a periodic lattice. Thus, the periodic

lattice is not uniquely defined. Any one of Figure 2-2, 2-3, or 2-4 has

a valid two dimensional periodicity. Their respective periodicity is

defined by their respective {VI, v2 }. This non-uniqueness provides

flexibility on the choice of the confinement cell.

However, an efficient sampling lattice may be defined. Pete, sen

U and Middleton [7]: "An efficient sampling lattice is one which uses a

minimum number of sampling points to achieve an exact reproduction of a

space limited function." In another words, the closest packing of the

object cell and its images without overlapping will be efficient.

V, v2 , v31 will be changed if the images are rotated around the

object cell; hence, the sampling lattice is still not fully defined

(Figures 2-2 and 2-4). Nevertheless, any set of {V 1 , V2 , v3} defined by

the above criterion will have the same efficiency, or the same number of

sampling points.

13
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Figure 2-3. New v1 and v2 defining a similar periodicity as Figure 2-2

except for the extra guard band
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I Figure 2-4. New VI and v2 defining a similar periodicity as Figure 2-2

except the images are rotated around the unit.
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The application of the sampling theorem for the reconstruction of

the original signal needs only an interpolation formula, provided the

non-overlapping condition is met. In this application, if one has the

following:

a) A signal limited in x-space and its images are specified

by v1 , v2 with non-overlapping condition met.

b) The sampling lattice in k-space is defined by the vector:

u + 12u2 , where 11, 12 = 0, ± 1, t 2, ± 3,

with vi u. = 2n6ij : 6i- = Kronecker delta
i.,.

or

U =2V

where

U= [Iju2]

V = [~112]

-T is the notation for the transpose of the matrix

inverse of V

c) The interpolation formula

then one can reproduce the two dimensional impulse response. The

procedures are:

1) Sample the k-space response at the sampling lattice for

V. F(l 1  + 12u2)

2) Interpolate other required points, if necessary.

17
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The interpolation formula taken from Petersen and Middleton [7].

F(EI' R2 ) = =- F(l1U1 + 12 u2 )G(k1k1 + k2k2 - a - 12u2)

(2-9)

where kl = k 1

k = k2k2

3) Inverse Fourier transform the k-space response to obtain the

two dimensional impulse response. "

1 0 -(k~x + kx)
f(x1, x2 ) 7 If F(kl,k 2)e 1d 2  (2-10)

With the ease of calculation in mind, the periodicity of the object

cell and its images are defined as in Figure 2-5 for this report. Its

corresponding sampling lattice is shown in Figure 2-6.

The reconstruction function for the parallelogrammatic

sampling [7]:

sin irw1  sin 7, 2

S-G(w w2 ) " ) (2-11)

where

W' is in the direction of Ul

"42 is in the direction of u2

18
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Figure 2-5. A choice of periodicity for the parallelogrammatic
containment unit
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For the sphere or isotropic confinement, the configuration is

adopted from the concept of closest packing of spheres by Coxeter [9].

The configuration chosen for this report is as shown in Figure 2-7. The

corresponding sampling lattice is shown in Figure 2-8.

For the two dimensional case [7,9]:

10
I R V2 =R 1

-1

(2-12)
(- 2 -II -

t a (2ir/R) u 2 =(2ir/R) 1

where R is the radius of the isotropic cell. The reconstruction

U function [7]:

G(w"I u2) = 2 2 X 2wlcos(Rwj/7)cos(Rw2 )* Rw1l(w I  
- 3w2 )

-2w1cos (2Rwf ml/V)

-2 w2sin(R,,,1//)sin(Rw2 ) }

(2-13)*

where

is in the direction of Gi

u2 is in the direction of j 2

-. (* There is a w2 factor missing in the third term of this expression

in reference [7]. See Appendix A for details of the derivation).

21
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Figure 2-7. A choice of periodicity for the circular containment cell
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Figure 2-8. Sampling lattice defined by the choice of periodicity in
Figure 2-7

I'.2

..-

- - --.- . .-



• .Since this report only deals up to two dimensional sampling, the reader

is referred to Petersen and Middleton's paper on the three dimensional

reconstruction function G(wI, w2, w3).

The N dimensional sampling theorem gives the minimum sampling

lattice or criterion which will sufficiently define the k-space signal.

*All other non sampled k-space values can be interpolated via an

extension of Equation 2-9. The k-space signal can be inverse Fourier

transformed into the spatial domain to give a representation of the

spatial impulse response. In another words, the spatial signal is also

characterized by those k-space lattice samples.

If one is interested only in the two dimensional impulse response,

then Mensa et al. [8] presents a different view on the sampling

criterion. Unfortunately, it is only applicable to the two dimensions.

First, rectangular to polar coordinate transformation is applied to the

two dimensional Fourier integral (Equation 2-10):

Go

j~ l+k 2x2)"
f~x, 2 ) ff F(k1, k2

) j dlx

f4-77r= 2 dkI dk2  (2-14)

{Let r2  k 2 + k2 'tan1 (k/k)

k1  k2 2

(2-15)
2= 2~ 2 -=tn1

x + x 2 tan'(x 2/xl) }

24
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-2w

f _ I " rF(r, )eJ2drpcos( -O)dr dO (2-16)

r=o O=o

Then the double integral is reduced to a single integral by considering

S only a particular frequency ring (i.e. 6(r-wi)).

2w
Wi - j2rwiPcos(O - 0)

fi, 0) =j42I F(wi, O)e dO

0=o

Thus, the two dimensional Fourier transformation is reduced to a

convolution type integral. F(kj, k2) is the frequency response of the

target in the two dimensional k-space. The notion of 6(r-wi) represents

information taken only with one frequency. Subsequently, the two

dimensional impulse response is obtainable via one integration. If

information from other frequency rings are available, then superposition

of every frequency ring response in the spatial domain will give a wide

band two dimensional impulse response representation.

fT(xl, x2 ) = Z fi(p, 0) (2-18)

" i

where

x= pcose

x2 = psinO

Naturally, the Nyquist spacings between the frequency rings and between

angular samples must be used, before the total two dimensional time

response obtained can be considered a sufficient representation of the

trJe two dimensional time response.

25
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The angular increment which satisfies the Nyquist criterion is

given by Mensa et al. [8]:

S<- TD << 2D..

Aej < sin (TO) X < 2D (2-19)

< W- X)2D

where 0 = maximum dimension of the object

= wavelength of the frequency to be used

(Assumption: The origin of the x-space coincides with the middle of the

object.)

The author would like to propose the following for the frequency

increment:

c
Af 4 2(I + K) (2-20)

where D = maximum dimension of the object

c = speed of light

K = some safety factor

The aspect angle which has the longest dimension of the object is

assumed to have the longest settling time in its impulse response. All

other aspect angles require Nyquist frequency increments larger than or

equal to this aspect angle. The value of the safety factor is the best

, estimation achievable by other means. The reason for the safety factor

is not all impulse response signals are limited to the length of the

,* object at any aspect angle. Furthermore, in the GT sense, some of the

26
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multiple scattering effects may be eliminated or included by employing I

smaller or larger value of the safety factor. This is equivalent to

truncation of the signal in time during measurement.

IL_,

U-2

r
=i- 27
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CHAPTER III

PRACTICAL CONSIDiERATIONS

In this chapter, the practical aspects of the previously described

theory are presented. Since negative frequencies cannot be physically

generated, an assumption on the negative frequency response must be

made. First, the assumption of a real measured signal is discussed.

The frequency limits are then considered in relation to the object's

* size, its impulse response and the data processing requirement. For

clarity, the practical aspects are discussed in one dimension.

Extension to the higher dimensions can be easily accomplished.

In general, a true impluse is hard to generate; instead, a Gaussian

pulse is often used. There are also times when good narrow Gaussian

pulses are not readily available. In these cases, the approach of

* frequency sweeping may be used. The bandwidths of most oscillators,

waveguide components, transmitting and receiving antennas are limited.

In essence, the frequency band can only be swept from wL to w11 (Figure

* 3-1). To overcome part of the problem, let's consider the one

dimensional sampling theorem [1, 2]:

28
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Figure 3-1. Frequency information available
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If f(t) : U for Itl > T

then F(w) can be uniquely determined from

nn
Fn F(-T) -

and

•0 nit sin(wT - nn)
F(w) = . F(7) wT - ni7 (3-1)

n =-o

{Note: If F(w) is even, then the required measurement

nit
information is F(-T); for n = U, 1, 2, }

- Consider the inverse Fourier Transform

1 jwt
f(t) = T7 I F(w)e d w (3-2)

00 CO

- I F(w)cos(wt) dw + I F(w)sin(wt) dw (3-3)

-00 .- CO

30
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If F(w) is even, then the integrand in the second integral is an

odd function of w. It follows that the second integral is zero.

Therefore,

f(t) = 2 f F(w)cos(wt) dw (3-4)

= real function, if F(w) is even

(Note: If F(w) is complex, then Re[F(w)] Re[F(-w)] and

Im[F(w)] = -Im[F(-w)] are the conditions for f(t)

to be real).

In this discussion, the object is real. It follows that f(t) is

also real. Now, information from -wH < w 4 - and wL < w 4  'H is

m available. (Figure 3-2)

Next, the Rayleigh Law is used to determine the scattered field at

d.c. or zero frequency. From Kennaugh and Cosgriff [3]: "As the source

n frequency tends to zero, all finite scatterers follow the Rayleigh Law,

giving a scattered field intensity which diminishes as the square of

frequency." The scattered field intensity at d.c. will be zero.

f

then

Fn is known for -N < n 4 N

31
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Figure 3-2. Frequency information available after assumption is made
about the negative frequency samples,,
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where

wHT
, N Z IT-](3-5)

.[x]:truncation of x's value after the decimal point

That is, if the first sampled location ('-) is higher than or equal to

L, then information is available from - H to wH , because one can

.- interpolate the in between data points using the sampling theorem.

Let

Xs be the object size

K be some safety factor

then the settling time Ts is

Ts  2(1+K)xs with T = Ts/2

One must have the condition:

7r

T >4L

27rc

11c 2nc
<_> (I+K)xS XL

<=> L 2(1+K)x s  (3-6)

This puts a limit on the lowest frequency usable, or the largest object

* size assumed by a given wL.

33
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The span (w1 i _ wL) effectively determines the resolution of the

impulse response signature. Let xr be the desired resolution on the

object, then the impulse response resolution is

2 xr
tr= c -

27wc<=> Wr = 
T~

One has the condition:

21irc
'H > 2 r= Wr "

27rc 7rc
<=> _7HX> .

<=> H < 2Xr (3-7) ,

Conditions 3-6 and 3-7 will help to decide how wide a frequency band may

*" be used. If the bandwidth is wide enough, then the impulse response can

,, be generated to a very good approximation.

A common problem during implementation may involve the inverse

Fourier transform on the reconstructed frequency spectrum. This

waveform my or may not be a well defined function which can be inverse

Fourier transformed into a closed form solution. The common approach

would be Lo approximate the integration using a summation on a digital

computer. In effect, this approach will be a Fourier series

representation which requires the time or frequency waveform to be

periodic. Consequently, there are 2 more limitations:

34
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1) The period (Tc) used in the digital computation must be greater

* than two times the settling time (Ts) of the impulse response.

(i.e., Tc > 2Ts)

2) The period (Lt) used in the digital computation must be greater

than two times the highest frequency (wH) swept.

(i e., *c > 24H)

Fortunately, a standard IBM subroutine FFT (Fast Fourier Transform)

package is available to do the required Fourier analyses.

Furthermore, one dimensional impulse response requires a two

dimensional plot. The two axis quantities are amplitude and time. Two

dimensional impulse response requires a three dimensional plot. The

three axis quantities are the amplitude and the plane axes. Should

anyone consider three dimensional impulse response, one requires a plot

in four dimensional space. Consequently, this report will only deal

with impulse responses up to two dimensions. With the knowledge in

one's mind that the spatial impulse response can easily be obtained by

i an extension of this two dimensional approach when there is an

appropriate representation.

-. 3
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CHAPTER IV

ONE DIMENSIONAL IMPULSE RESPONSES

In this chapter, the interpolation of one dimensional impulse

responses is presented; first, the result of interpolation using one

dimensional data; then, using two dimensional data. The object is a six

• -inch diameter metallic sphere. This object choice is because the Mie

solution in frequency domain is readily available. In this first

section, the Mie solution frequency data are sampled at different rates

*. and interpolated either using a straight line or a sinc reconstruction

functi on.

JN

" N ni sin(wT - nw)
F F(i) = Z F(-T wT nw

n=-N (4-1) -l

where

N = I

I(x) = truncation of x's value after the decimal point

H = highest frequency used

[Note: This is Equation (3-1) except the summation is from

-N to + N].

36-.
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A cosine tapering weighting function [10]: (Figure 4-1) (for the

convenience of the reader, all tables and figures of Chapter IV are

grouped together at the end of the chapter)

= 0.5[1+cos(11)] Inl Ni
W(n), (4-2)

= 0 Inl > N1

is multiplied to the interpolated frequency data. The purpose of the

weighting or filtering is to reduce the effect of the Gibb's

phenomenon [2]. The resulting data are inverse Fourier transformed into

the time domain discretely to give the impulse response in time.

Figure 4-2 represents a time domain impulse response plot obtained

from the Mie solution for a six inch diameter metallic sphere using the

frequency spectrum from 0 to 12 Ghz with a cosine tapering filter. The

imperfect specular impulse and the ripples around it at the start of the

response are caused by 1) finite bandwidth, and 2) Gibbs' phenomenon.

Figure 4-2 is considered to be the standard for comparison with them
other responses. Its frequency samples are taken every 60 Mhz and

linked together by straight lines. Figure 4-3 has frequency samples

taken every 0.125 Ghz over the spectrum of 0 to 12 Ghz and interpolated

the in between points using Equation (4-1). The differences of the

impulse responses in this chapter from Figure 4-2 (the 'exact' solution)

are shown in figures designated with their respective figure number plus

an 'a' attached. For example, to obtain Figure 4-2 from Figure 4-3, one

adds Figure 4-3a to Figure 4-3.

F
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Figures 4-4, 4-5, and 4-6 are similar to Figure 4-3, except

frequency samples are taken every 0.25 Ghz, 0.5 Ghz, and 0.75 Ghz

respectively. Figure 4-5 is still recognizable to be Figure 4-2 but

Figure 4-6 is not. Figure 4-6 does not have similar behavior because it

employs a frequency sampling rate below the Nyquist rate. From Figure

4-2, one can estimate the settling time of the impulse response of the

sphere to be about 1.5 nsec. Equally well, one could use a longer

settling time depending on one's assumption of the noise amplitude.

i .e., .

T = 0.7bE-9s

1 1
fs >  2T 1.5E-9s

0.66 Ghz

< 0.75 Ghz (Figure 4-6)

Figures 4-2 to 4-5 have sampling rate better than the Nyquist rate.

If the sampling rate is high enough, then one may use straight line

* interpolation (Figure 4-2) instead of the sinc reconstruction function

to save computer time on interpolation. On the other hand, if samples

are scarce but still satisfy the Nyquist criterion, then the sinc

reconstruction function (Equation (4-1)) is preferred for more pleasing

results. (Figures 4-3, 4-4, 4-5)

Now, the reconstruction of the one dimensional impulse responses

from data obtained on two dimensional isotropic and cubic sampling

lattice is presented.

F(1ZI, 2) = F(l1lU + 12u2)G(klk I + k2k2 - l1 UI - 12u2)
1i 12 (4-3)
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where

1 12 are summed over 11 and 12 which satisfy

k L < III u1 + 1 2u21 < '

and

k L and kH define the frequency bandwidth used.

(Note: This is Equation (2-9) with finite summation.)

Samples are taken out of the Mie's frequency solution on the isotropic

sampling lattice defined by u1 and u2in Equation (2-12), and the cubic

sampling lattice defined by

1 - 0u 21 [U] U2  2w [11 (4-4)

samples are taken over I~u Ui + 1 for 11, 12 U , ±1, ±2,

(4-5)

This sampling lattice is generated by the program PTGRIL) (see Appendix

B). The frequency response for an aspect angle is interpolated using

Equation (4-3) in conjunction with either Equation (2-13) for isotropic

sampling or Equation (2-11) for cubic sampling. This interpolation work

is done by the program INTERPOL (see Appendix 6). The resulting

frequency response is again cosine tapering low pass filtered to reduce

the Gibb's phenomenon. After the filtering, the frequency spectrum is

inverse Fourier transformed discretely into the time domain to give an

impulse response picture for .he six inch metallic sphere. The

p 39



* filtering and the discrete inverse Fourier transform are functions of

*FIRAN [11] (see Appendix B).

Sampling at every 0.5 Ghz for a six inch diameter metallic sphere,

*is equivalent to assuming a signal having four times the diameter of the

* sphere in one dimensional space. Therefore, the two dimensional

* confinement cell is assumed to contain the sphere and has a guard band

* of 1.5 times the maximum dimension of the sphere surrounding the

sphere. The safety factor thus chosen is 1 (i.e., 2(1+K)=4 <=> K=4).

- The frequency range sampled is 0 to 12 Ghz.

Figures 4-7, 4-8, 4-9, and 4-10 are one dimensional impulse

responses reconstructed from two dimensional isotropic sampling data,

for aspect angles of 0, 0.719, 1.438, 30 degree respectively. The CPU

time taken for interpolating each waveform is about 5 minutes for 20U

plotting points. Figures 4-11, 4-12, 4-13, 4-14 are reconstructed from

* cubic sampling data, for aspect angles of 0, 1.193, 2.386, 45 degrees.

The CPU time taken for these waveforms is about 2.5 minutes for 200

plotting points. Less time in interpolation for cubic sampled data is

probably due to the simplicity of the reconstruction function (Equation

* (2-11) versus (2-13)). These angular choices are arbitrarily chosen.

One should note the close resemblance of all these figures (4-7 to 4-14)

with Figure 4-5. Next, let's consider the case of more samples taken.

* Effectively, the safety factor is changed from one to three but the

* frequency range remains the same. Figures 4-15, 4-16, and 4-17 are

reconstructed one dimensional impulse responses using isotropic samples

for aspect angles of U, U.352, 30 degrees respectively. Again

* discrepancy is not high (Figures 4-15a, 4-16a, and 4-17a). Since the

4U



density of samples taken is finer, or more samples participated in the

interpolation, the CPU time has incresed to about 20 minutes for 20U

plotting points.

If both the isotropic and cubic sampling can perform competitively,

how does one decide on which sampling yrid? Tne answer lies in the

efficiency definition defined previously. However, the area is

considered in a plane instead of the volume in a three dimensional

space.

i.e., one modifies Equations (2-b) and (2-7) to

AREA OF A CROSS-SECTION ON THE OBJECT
Efficiency -AREA OF THE SAME CROSS-SECTION ON THE TWO (4-b)

DIMENSIONAL ENCLOSURE

but the decision rule: Equation (2-8), remains the same.

U Efficiency, as mentioned before, is defined as a minimum sampling

requirement. Three objects: a six inch diameter sphere, a 3Y~ inch

cube and a sphere cap cylinder are shown in Figure 4-18 on their major

axis cross-section. Their respective cross-sectional areas; closest

circular, squared, rectangular enclosure cross-sectional areas; and

efficiencies are tabulated in Table 4-1.

The definition of Equation (4-b) is used to locate the sampling

lattice. The number of these locations over a frequency range is summed

to give the minimum number of sampling, defined by the sampling theorem,

to sufficiently characterize the spatial impluse response in that

frequency range. This work is done by the program PTGRIO (see Appendix

B). The numbers are tabulated in Table 4-2 and plotted in Figures 4-19,
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4-20, and 4-21. A safety factor of one is used in the computation. The

sizes of the objects are chosen such that the circular enclosure is the

same for all three objects for easy comparison in the graphs.

As the frequency range becomes larger and larger, the significance

of the efficient sdmpling grid becomes more and more important. Let's

- take the example of the sphere cap cylinder (Figure 4-19). The use of

- the rectangular enclosure will provide an efficiency of 0.96. The

number of samples required over U to 12 Ghz is 696. The use of the

squared enclosure can only give an efficiency of 0.38. The number of

samples required is 2.5 times that of the rectangular enclosure. The

use of the circular enclosure has an efficiency of 0.45. The number of

- samples is about 2.3 times that of the rectangular enclosure. As the

frequency range is expanded, saving in measurement time by the proper

. choice of the enclosure becomes very substantial.
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TABLE 4-1

* EFFICIENCY COMPARISON ON 3 OBJECTS USING 3 TYPES OF CONTAINMENT CELLS

'Object SPHERE CUB3E SPHERE CAP CYLINDER

Area on 182.4 116.1 82.2
major axis

Area of closest 182.4 I 182.4 182.4
circular enclosure

Area of closest 232.3 11b.1 214.7
* . squared enclosure

Area of closest 232.3 116.1 8b.93 rectangular enclosure

Efficiency of 1 U.64 0.4b
circular enclosure

*Efficiency of 0.79 1 0.38
* squared enclosure

*Efficiency of 0.79 1 IU.96
rectangular enclosure

(Note: the areas are in units of squared centimeters)

43



TABLE 4-2

THE NUMBER OF SAMPLING PUIN4TS FOR 3 TYPES OF SAMPLING

ON 3 OBJECTS OVER VARIOUS FREQUENCY RANGES

Object SPHERE CUBE SPHERE CAP CYLINDER

Type of enclosure circular Isquared squared Irectangular [squared
lFrequency ranges+
from U up to

(Ghz)_____________ __

1 12 12 8 2 8I
2 42 148 I 24 20 44
3 96 120 6 U 46 108-
4 186 212 IOU 80 192
5 282 324 16U 11b 292
6 408 472 240 174 436
7 bb8 I 64U I 324 236 b92
8 720 828 I 420 310 768
9 912 1048 b 16 384 972

10 1134 1304 616 476 1200
11 1368 1564 776 b82 14b6
12 1626 1876 940 696 174U

in4:1;: -~ U42 4-19 4-19

Figure

Notation: x 0 0 0 0 __
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Figure 4-3a. Error of Figure 4-3 from Figure 4-2
(Magnification lOx)
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Figure 4-b. Similar description as Figure 4-3, except frequency samples
are taken every 500 Mhz
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Figure 4-11. Impulse response of a 6" metallic sphere at 00 aspect
angle with the 1-D frequency response interpolated from
2-D cubic lattice samples taken with a safety factor
of 1 over the range of 0 to 12 Ghz using Equation
(4-3) and (2-11)
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Figure 4-18. Dimensional perspective among the sphere, cube and sphere
cap cylinder used in the example
(Diameter of sphere =6 inches)
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sampling lattices on a sphere cap cylinder described in
Figure 4-18
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CHAPTER V

TO DIMENSIONAL IMPULSE RESPONSES

Thus far, the discussion has focused only on the number of samples

*:  required. The smaller the number of samples, the less measurement time

is required. However, if the two dimensional impulse response is of

interest, then the transform method must also be considered. This

chapter will discuss the potential time consumption problem of

multi-dimensional Fourier transform plus some possible solutions. Image

- reconstruction using the spatial impulse response is also considered.

While an isotropic enclosure may be more efficient to enclose a

I sphere than a cube, it is not as easy to do three dimensional discrete

Fourier analyses as the cubic enclosure. Most of the discrete Fourier

transform techniques are developed to fit equally spaced data. In

I another words, programs are written to perform readily on the cubic

sampling lattice. Any other sampling grid data must be interpolated to

the cubic grid either before or after the discrete Fourier transform

step; otherwise, the proper representation cannot be achieved.

Sometimes, interpolation may also be desired for the cubic

sampling grid data, as in the case of higher resolution requirement than
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measured. This type of interpolation reqiires a lot of computer time as

pointed out in Mensa et al.'s paper 118].

Let's consider an example to estimate the time involved.

From Chapter IV:

1) Interpolation for 200 plotting points using 1626

isotropic samples is about b mins.

2) Interpolation for 20U plotting points using 1876

cubic samples is about 2.5 mins.

3) The number of samples required on a sphere cap

cylinder for circular, rectangular and squared

enclosures are 1626, 696, 1740 respectively.

(Table 4-2)

Compact range measurement facility at 0. S. U. per Walton [12]:

The measurement system response time is about:

1) 0.2s/data point, if frequency scan is used.

2) 1 min/frequency ring, if angular scan is used.

The time estimation for each type of the sampling measurement on the

sphere cap cylinder and two dimensional interpolation is presented in -

Table tb-i. (For the convenience of the reader, all tables and figures

of Chapter V are grouped together at the end of the chapter.) The

* interpolation time for the rectangular enclosure data may also be

* considered zero. By remembering a scale factor, the data can be

* processed as in a squared grid. If the proper signal representation or

* a finer resolution is required, the interpolation step is still

* 82

* ..- . . . . . . . . . . .



unavoidable. Therefore, the numbers in the table do give a fair

comparison, as all data are brought to the same level - squared grid

representation. The interpolation step plays an important role on the

decision of which type of sampling to use. The saving in measurement

time is sometimes balanced out by the data processing time.

The Nyquist criteria (Equations (2-19), (2-20)) plus the polar

transformation (Equation (2-15)) described earlier give new perspective

for the efficient but non-cubic enclosure. Now one only needs to

interpolate for a sufficient number of frequency rings. This work is

done by program INTERPOL(see Appendix B). Each frequency ring is

transformed to the spatial domain individually and summed together to

get the total time response. The former is the work of program INTEGFFT

(see Appendix B); the latter is the job of program SUM30) (see Appendix

a 3B). The interpolation performed this way may require as hmuch time as

the interpolation onto the squared grid. It nevertheless gives an

alternative way to the solution of the problem. Now, another question

may be raised: Why perform interpolation if it is so time consuming?

* The interpolation may be avoided, if the two dimensional time

response is the only interest. All one has to do is to measure the

frequency rings and then process the data as described before. However,

if one desires the impulse response of a target at a particular aspect

angle or the response over a frequency ring other than those measured,

one is required to develop a different interpolation scheme than the one

described in the theory section. A possible way to reduce the
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interpolation time is to derive a faster interpolation scheme or a

general multi-dimensional Fourier transform technique which operates on

any grid. A parallel processor which uses optics may be another

possibility in terms of hardware. A lens system has a Fourier

transform relationship between the source and the image [13].

The Mie solution for a sphere is a very good data example; except

its backscattered response is isotropic. A proper choice of test object

must have non-isotropic property. The sphere shifted off the centre of

the plane is one possibility, but it only has variation in the phase

term and not in the magnitude term. Since most of the other exact

solutions are not readily available, a first order UTD solution for a

finite circular cylinder [14] is used; with the caution that UT gives a

valid approximation to the exact solution at high frequency.

The size of the circular cylinder is chosen to be six inches in

length and three inches in diameter. Having chosen the size of the

cylinder, one has defined the low frequency limit of this UTD model to

about 2 Ghz. Since the step and ramp response of an object reduce the

need for the high frequency information, only the impulse response of

this cylinder solution is considered here.

Figure 5-1 is the two dimensional impulse response (Equation (2-9))

for the above circular cylinder. The frequency samples are first

generated on the grid points defined by Equation (4-5) over only 180.

In this case, the spatial impulse response is assumed to settle after

the wave has passed over four times the length of the object at every

aspect angle. The rectangle so designated has dimensions: 24" in
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length and 12" in diameter. The periodic lattice is chosen as in Figure

2-3. Consequently,

i 24" v2 - 12" [U)

The guard band is 9" on each side of the cap of the cylinder and 4.5"

on the circular surface. Then,

2n 2Tr
u1 2411[0 U2 12 "~l

Since,

=ll llullkI

z2 I 721u1k2

where

*Ii, 12 0, t 1, t 2, - 3,

Therefore, the sampling lattice is defined by:

luI + 12u: l=lullkI + 12 1u2 lk2

<=> points on the k-plane:

k = 1l lu l l and k2 = l21u 2j

r
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* where

I1 1 U, t 1, t 2, ±3,

*Then the sampled data are Fourier transformed discretely into the

spatial domain. The discrete two dimensional Fourier transform is

performed by an IBM subroutine HARM (see Appendix 8). The frequency

range used is 2 to b Ghz. The safety factor of one is used. The

* vertical polarization data are taken from the UTL) solution on a major

axis cut. Figure b-la is the contour plot of Figure b-i. Figure b-2 is

also a two dimensional impulse response for a cylinder solution that has

* the same previous description. The differences are the technique of the

* Fourier transformation and the sampling locations in the frequency

plane. It employs Mensa et al.'s method on 6 different frequency rings:

2.5, 3, 3.5, 4, 4.5, 5 Ghz. (Equation (2-18)) The samples are taken so

that Equations (2-19) and (2-20) are satisfied. Again the samples are

taken over 180'. Figure 5-2a is the contour plot of Figure b-2.

Comparing Figures 5-1 and 5-2, one can see many similarities. The

* differences can be deduced by recalling their respective genera~ting

methods. Figure 5-1 has information scattered all over the frequency

range; while, Figure 5-2 has vaules only over those frequency rings

Smentioned before. There is also the processing error involved.

One interesting thing is to be noted in Figure -1, or 5-2. If one

records just the highest points within its neighborhood, one can trace

out a rectangle. This may be easier to see on a conto-r plot (Figure

Sh5-a, 5-2a). This looks like one cross-section of the target. If 2w
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solid angle information is available, then an image of the target can

indeed be produced. Of course, the resolution is still governed by the

highest frequency used. In this case the bandwidth used is quite

narrow; hence, the resulting resolution is not high.

Figure 5-3 is generated similarly as Figure 5-2. It is generated

using Mensa et al.'s method on 16 different frequency rings: 2.5, 3,

3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10 Ghz. Figure

5-3a is the contour plot of Figure 5-3. The dimensions of the rectangle

defined by the high peaks do correspond to the major axis cross-section

of the circular cylinder described earlier. One may wonder how a

rectangle is concluded from Figure 5-3a. There are a few clues

available. The Ti's are quite obvious from the high peaks on the

illuminated side. The final time (Tf) of the one dimensional impulse

U response, as one recalls, is defined by the beginning of the exponential

decay of the signal. The final peaks at the coordinates (5,3) and

(5,-3) are indeed higher than any point x1 > 5. The ridges and valleys

* on the shadow side (xi > 5) of the cylinder is fairly straight.

Let's consider the case where this imaging theory converges to

Lewis-Bojarski's work. Figure 5-4 is the same as Figure 5-3 except

data are taken over 3600, or illuminated in every direction on the two

dimensional plane. Figure 5-4a is the contour plot of Figure 5-4. As

expected, the peaks (or Ti 's) in the figure trace out a rectangle which

is the major axis cut of the circular cylinder. One may note that

literature today usually presents data plots using the absolute value

of the amplitude. One must be careful when confronted by these plots.
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As Figures b-5 and b-ba have shown, the absolute value of the amplitude

does not usually tell the whole picture. Figure b-b plots the absolute

-. value of the amplitude in Figure 5-4. Figure b-ba is the contour plot

of Figure 5-b. The major axis cross-section is no longer as well

defined by the peaks as in Figure 5-4 or b-4a. Nevertheless, producing

"" an image using the spatial impulse response is very promising.

Although this thesis' imaging theory is not as 'rigorous' as Lewis

and Bojarski's work, the theory is more flexible in application. The

. object is only required to be illuminated at the aspect angles over a 2wr

* solid angle. The shadowed side information is also employed in the

image reconstruction process. There is no need for any assumption on

-* the object's shadowed side geometry. If the start and the end of the

- object's one dimensional impulse response for every aspect angle over

half of the 4ff solid angle are well defined by Ti's (illuminated) and

Tf's (shadowed) as described ear',er, then an image of the object may be

"* produced using the Ti ' s and Tf's. For Ti's and Tf's not defined

distinctly, careful interpretation on the spatial impulse response oust

be used. In the case of a full 47r illumination, the image may be

* reconstructed using only Ti's information. This converges to

Lewis-Bojarski's identity. This theory is better in utilizing data

- information available but it lacks a concrete proof.

Let's investigate this imaging possibility further using a six inch

diameter metallic sphere whose centre is located three inches off the

*- centre of the reference plane on the x1-axis. The cubic sampling
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lattice used has a safety factor of three. The frequency range used is

m0 to 12 Ghz. Again, the frequency data are taken out of the Mie

solution. The sampling lattice is defined by Equation (4-5) over half

of the plane (lrOe2n). The data are weighted by the two dimensional

P cosine tapering function. The two dimensional version of Equation (4-2)

is replacing the variable n by the radial distance from the centre of

the k-space. The shape of the function is Figure 4-1 rotated around the

weighting axis. The weighted data are Fourier transformed into the

spatial domain and presented as Figure 5-6. Figure b-6a is the contour

plot of Figure b-6.

Again the initial speculars trace the illuminated side of the

sphere nicely. The Tf's are not as well defined as the finite cylinder

case. More interpretation work is required. The valley on the shadow

Sside shows a curvature. This may be indicating the back side of the

v object having a curvature. The radius of the valley's curvature is

about 3w inches, which is the equivalent distance a wave would creep

i before scattering back in the transmitting direction (Figure b-7). The

radius of the curvature created by the initial speculars is about six

inches, which is the 2R distance travelled by the wave. The first R is

the distance travelled to the target. The second R is the distance

travelled by the wave scattering back from the target. Using this

information, the circle with the three inch radius can be formed.
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Of course, if one uses data over the full plane as Lewis-Bojarski's

work, then there is no need for the previously described type of pattern

recognition interpretation. The initial speculars usually define the

perimeter of the object, if it is a smooth convex body. The perimeter

indicated is only one cross-section of the target on the major axis. If

more cross-sectional information of the target is available, then an

image of the whole object may be produced. The potential on the image -,

reconstruction is high, but more research work is required in the area;

particularly in the pattern recognition area.
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TABLE 5-1

AN EXAMPLE: TIME ESTIMATION

Type of Measurement Interpolation Total
enclosure time time timej.(mins) (mins) (mins)

circular 5.42 40.09 45.51

rectangular 2.32 8.47 10.79

squared 5.80 - 5.80
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Figure 5-7. Path length of a creeping wave on a metallic sphere
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CHAPTER VI

- CONCLUSIONS

If a signal is limited in the spatial domain (or wave number

domain), this signal is sufficiently characterized by its values over

the discrete sampling lattice in the wave number domain (or the spatial

domain). In the two dimensional case, the sampling locations in the

wave number space are specified by the vector:

[lluI + 12u2]

where

11, 12 = 0, 1 1, ± 2, t 3,

The u, and u2 are related to v, and v2 by the following:

[51 1u2 ]J = 2 [V Tv2] T

where

-T :the transpose of the inverse of the matrix formed

I-1

r
,.. 105
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The V, and v2 are specified by one's choice on how the space limited

signal is assumed to repeat itself in its domain. V1I is pointed to the

centre of one of the closest images in the periodic lattice. v2 is

independent of v1, and it points at the centre of another close image.

By defining the settling time as the end of the impulse response, one

* has a space limited three dimensional impulse response signal. In the

finite circular cylinder data presented in Chapter V, the signal is

assumed to be 4 times the size of the cylinder in the two dimensional

* spatial plane. The choice of 4 is equivalent to choosing the one

dimensional impulse response of having a settling time four times as

long as the wave would travel over the length of the object at any

aspect angle. Or the safety factor is chosen to be one. (i.e.,

*2(1+K) =4 <=> K =1) This factor provides sufficient results in both

Chapter 1V and V.

In Chapter V, the example of the finite circular cylinder with

dimensions: 6" in length and 3" in diameter, the two dimensional

* containment unit is chosen to be a square. The squared repetitive

lattice in the spatial domain is defined by,

where

R =6"1

*and the safety factor K is chosen to be 1. With these inputs to the

* program PTGRII) (see Appendix B), the program outputs the sampling

lattice defined by 5, and j2. The data output is arranged with the
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aspect angles and the corresponding frequency increment. One makes the

necessary data extraction at the proper aspect angles, and increments

the frequency until the highest frequency is reached. One could also

have defined a rectangular repetitive lattice. Then

V1=:R [ j] = [o0.5

where

R = 6"

Or, for a circular repetitive lattice,"2
vv2 = R F a

where

/ ,2+ 2

* R = (6) +(3")

= 6.708"

Again these V, and v2 values can be input into the program PTGRID (see

Appendix B) to obtain the sampling lattice.

Thus, one can sample discretely and interpolate in the wave number

space to reproduce the frequency response of an object. Fourier

transforming this wave number signal into the spatial domain gives a

representation of the spatial impulse response of the object. The
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spatial impulse response is defined as the image function obtained by

three dimensional Fourier transforming the far field frequency response

of a finite object at all aspect angles defined over the 41 solid angle.

- Since most objects have different shapes, sizes, and orientations, their

corresponding spatial impulse responses are different. Their

corresponding sampling lattices will also be different. One general

sampling lattice that is applicable to a set of objects is desirable.

This is accomplished by introducing different types of canonical

containment units to confine the spatial impulse responses. Two common

canonical cells are parallelepiped and sphere. Two dimensional examples

are shown in Figures 2-b and 2-7, with their corresponding sampling

lattices shown in Figures 2-6 and 2-8 respectively.

In Chapter IV, a six inch metallic sphere is chosen as an example

to compare two types of sampling lattices -cubic and isotropic. The

comparison is performed on the interpolated one dimensional impulse

responses at different aspect angles using the interpolation scheme

defined in the sampling theorem. As one expects, the results turn out

to be competitive for the two types of sampling. Efficiencies, in the

sense of the least number of sampling points, are different for

different canonical containment cells used on the same object.

Efficiency in using one type of canonical containment cell:

n = CONSERVATIVE ESTIMATE OF THE OBJECT'S VOLUME
VOLUME OF THE SALLEST CANONICAL CONTAINMENT"-" CELL ENCLOSING THE UtBJECTI'

C.1 LUM6oIN H K
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Efficiencies among a sphere cap cylinder, a sphere and a cube using

cubic, isotropic, and rectangular box confinement units are presented in

Chapter IV. The efficiency definition proves to e a very good concept

in deciding the type of sampling lattice for an object or a group of

U objects. This is under the assumption that the settling time of the

spatial impulse response is shaped similarly to the object; e.g., the

settling time of the impulse response of a sphere is the same in every

aspect angle.

To obtain an approximation to the spatial impulse response from the

sampled data over a finite frequency range, one can use the discrete

Fourier transform. Because of today's digital computer design, the

different sufficient characterization cannot be readily processed

* without interpolation; except, of course, the cubic lattice data sets.

The interpolation step which most people like to avoid, is very time

consuming. This may be referred back to the time estimation example on

a sphere cap cylinder presented in Chapter V. The interpolation step is

another factor that affects an engineering decision. The avcidance

helps Mensa et al. to arrive at the time response faster. The price

they paid is the limitation of their method's application to two

dimensional Fourier transform. Their approach is thus not recommended

because of its inability to be expanded into higher dimensions. The

sampling criteria accompanying their method are,
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the angular increment:

Xt,"TD XiI( << 20."

a si X < 2D

.4 2D

the frequency increment:

c
A f 4 2(1+K)D

where

D maximum dimension of the object

" wavelength of the frequency used

c = speed of light

K = some safety factor

In the finite circular cylinder example,

D = 17.04 cm

K 0.75

A f 4 0.503 Ghz

at the highest frequency of 10 Ghz, -

= 3 cm

A e < 5 degrees
6;"

Therefore,

the frequency increment chosen = 0.5 Ghz

the angular increment chosen 1 1 degree
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Nevertheless, processed results from UTD solution on a finite circular

cylinder support the convergence of Mensa et al.'s method to tvo

dimensional discrete Fourier transform.

Lewis-Bojarski 's identity requires either the object be illuminated

* at all angles or assumption be made on the shadowed side. Results on a

finite metallic circular cylinder and a metallic sphere indicate that

the spatial impulse response approach does not have the above

restriction, though proper interpretation may be required. Furthermore,

the use of the spatial impulse response to imaging can converge to

Lewis-Bojarski's results. There is also an indication that the

r presentation in the form of the absolute value of the amplitude does not

necessarily provide the proper picture for pattern recognition. The

plain amplitude representation with positive and negative values is

3 sometimes more appropriate. This is concluded by comparing the

Figure 5-4, or 5-4a with 5-5 or b-5a. The perimeter of a major axis

cross-section of a finite circular cylinder is shown more distinctly

* using the plain amplitude presentation. Judging from the two

dimensional impulse responses, one can deduce the substantial potential

* of the spatial impulse response in image reconstruction.

The spatial impulse response has numerous applications including

target identification and imaging. Although smooth convex metallic body

examples are considered here, tomographic applications on other types of

bodies are possible. In all, the N dimensional sampling theorem

provides new insights into the sampling criteria in the wave number

space for a finite object. The potential in reduced management time on

.



two or three dimensional data is enormous. The two dimensional impulse

response also projects a promising target imaging technique using the

spatial impulse response.

1-1
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CHAPTER VII

RECOMMENDATIONS

Traditionally, two and three dimensional data are presented in

cubic lattices, for which present day digital computers are designed.

Although the digital computer of today manages data in cubic lattices,

the cubic lattices are not necessarily the most efficient in terms of

the least number of data samples. The most general approach to solve

this computer problem requires the cubic data management structure of

the digital computer be modified into a more general data structure. In

another words, data organized in any random fashion can be processed by

this computer. If this general approach is not practical, the next best

step is a faster interpolation scheme either in hardware or software.

* The lowest level on the hierarchy of improvement is the improvement for

* specific application. In this thesis, a general Fourier transform that

can perform on any data lattice, fits into this category.

After some of the computer problems are solved, the next step in

the development is to account for the experimental noise. How does one

extract the true information that is embedded in noise? Without this
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generalization, this report is only useful in information storage and

retrival on noise free data. Noise free is in the sense that the noise

effect in measurement is eliminated before storage. The full

development of this report's theory will enable significant reduction in

time on data measurement, processing and storage.

The whole report is focused on the monostatic data. It would be

interesting to see how this theory holds up with the bistatic data.

Using the definition of the three dimensional Fourier transform, one can

derive a similar method that parallels Mensa et al.'s approach.

* By converting the k-space coordinates into spherical coordinates:

kI = psinocos4 k2 = psinesin4 k3 = pcose (7-1)

equation (1-1) becomes:

f) 2 jliflpcos < (i, p)
f f(x) =8 f f f F(p, , *)e p sineddO

p=O 0=0 €=0 (7-2)

where

(Rotate the k-space coordinate system so that the k3-axis is in line

with : :> < (i, p) =
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Then,

7r 27,
8i J I (p, se 2

p=U 0=0 *=O (7-3)

By considering one particular aspect angle: Om, 0i

sinei- JlxJpcosOi 2
fi(x) = 8 3  f F(P, 0i, Om)e p dp

p=O

With all aspect angular data,

f(x) = f im(X) (7-!)
i=1 m=1

3 = the impulse response of the finite object at

Even though Equation (7-4) requires the integration over all

frequencies, the integral can be approximated over three regions: theU
Rayleigh, the resonance, and the optical. Thus, the integral in

Equation (7-4) is not impossible to be solved. There are problems

associated with this approach. The Nyquist angular requirement is

frequency dependent (Equation (2-17)). In order to satisfy the Nyquist

angular requirement at high frequency, the signal is excessively sampled

-. at the low frequency spectrum, but sampled only adequately at the high

frequency spectrum for a finite frequency range of interest.

Nonetheless, the approach is viable if one does not intend to extend the

bandwidth of the approximated spatial impulse response.
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With the help of the different sampling criteria, the infinite

number of samples required to reconstruct the impulse response over a

finite frequency range has changed to a finite number. Though the

number is finite, the measurement time can be very substantial when an

expanded frequency range in two dimensions, or three dimensions is

required. Professor Leon Peters suggested another approach to further

reduce the measurement time [15]. At high frequency, a target's

frequency response is mostly contributed by its major scattering

centres. If one can make a set of different canonical scattering centre

measurement, then most targets' high frequency response can be built

using the proper phase shift factors. For most scattering centres,

their frequency responses are relatively simple. As a result, the

Nyquist criteria for these centres in the frequency domain are more

relaxed than complete structures. These canonical scattering centre

data can be reused to reconstruct the high frequency response of other

targets. In another words, after the canonical scattering centre data

are available, one only measures the low frequency spectrum before the

one dimensional, two dimensional, or three dimensional impulse response

of an object can be reconstructed. This would be another interesting

area for further exploration. However, more development work is

required in all these described areas to extend this report into a more

useful engineering tool.
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APPENDIX A

THE DERIVATION OF EQUATION (2-13)

2wI COSTT cos (Rw2)

1 (2Rwf\
G~l 2 Rww 2 3w2 x -2w, Cos \~,

R - 3w~2) (W~

Equation (65) of Petersen and Middleton [7]:

UG) (2) 2 ) f f e dx

Regular
Hexagon

Equation description for the regular hexagon. (see Figure A-i)

x2= -/- xi + 2R

I2.
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OR

Figure A-i. Hexagonal integration limit
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X rxi -2R

" {~A
I~ = xi (2R

2 'xl ( -)

x2 = 3 xl + 2R

then

G( ) (1+12 + 13) (A-i)

*where

S(A) R

J(wlxl + w2x2)
1 = f f e dx2 dxl (A-2)

-2R) x2 =(

R
J(wIXl + w2 x2) 

:

- 12 = f f e dx2 dxl (A-3)

(-R x2 =-R

xl V3
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13 f f e iwx+w2X)dx2 dxl (A-4)

Equation (A-2):

11 f f e *e dx2 dxl

Xi -3~- X2=-3 2R

(2 RW~~ (/3xl + 2R)

iwixi e Id-fI e L w 2 dxl -

XI (2 R(vnxl + 2R)

___jx JWX jw2(V3xl 2R) -jwW-2(l3X 2R)

J2 f ee-e }dxl
1 { i(wi + V3w2)xl + 2jRw2 - j(w1-V3w2)x1 2jw2R)
w2 f e edxl
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r I -R
-jw + e -32x + 2jw2)x /32~

i ~L vlw 32)-

13wl )(2 ) - 2R

1= 2jRw2  Lei(wl + r~2(1)-~l V3w2)(R)j

e 77*

-2j 3w2) Fv'3 /w2)( R) -j(wl - 3w2)(2Rj
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Equation (A-3):

R
€"J R

J(wlxl + w2x2) "-
12 f e dx2 dxl

-R x2 =-R
xl= r3 "

I eJIldxl f e J2X2dx2

x2 = -R
x1 =r2X

R R

eJ jwxl2 x2

-- -R

Z sin 77 [ -2) sin (2 R )l

Therefore,

(wiR2 - ( 2R) sin

w22 ) in (w",
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Equation (A-4),

13 ) ~ x + 2R+ 2)

13 fI dx2dxl

(R)

( ) JwlXl .jw2x2 dxll 2
f ee x

2R2

1 iwjxj r jw2(-V3xl 2R) ejw2(/3x1 2R)] x

= ~ w 1- 3w2)xl +2jRw 2 -ej(wl + /3w2)x1 2jRw2]dx
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2R

j(w. - 3w2)x1 2jRw2
1 I e

2R

Li(wi + '/3 2)xl 2jRcw2j I
i wl + V/ w2)R

Therefore,

2jw2i~l ~w)(R) j(wi /3w2)(2R)1

-2w /-3w2)

e-2jRw2  j(wi V'3w2)(2R) i("wi /32)

+ /~2 e -ej
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Now,

Ii+ 13

e-1~w 3wi2)2R -2Rw2] j[(wl + /3w2)2R -2Rw2]

______73 e 7~3

w2(wi + /-3w2)t

-i~ l+ /3w2) R - 2Rw2] j[(wi + /3w2) R - 2Rw2il-e P-e P

--132){ /3w2) R~ + 2Rw2] j[(wl - 3w2) R + 2Rw2]

e-iw 1  - 3w2)2R +2Rw2] iE(w. - 3w2)2R +2Rw 2Jl-e -e 77

w2w11 2cos (wl + 13w2)2R -2Rw2]

-2cos [wi + V13w2) R 2Rw2 ]

(This expression continues on the next page.)

V.
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V 

4--

+ 2wi12cos [cwi - 3w2)R +2Rw2]

-2cos [(wl - 3w2)2R + 2Rw2]

-41 1

Jsin 2 (3R)(wl + 3w2) 4w i )(l+/ 2

W2(w1 + w)7 /

+ _____ in2 3R( V3)+ 4Rw27sn2 R(w ~2
w2(wlii - L'3w -3 -r3) + i 1 Wj

-4 f -R Rw2 (Rw /w
~sin K -- ) sin 23+

w(l+ V13w2)

+ W ( 13 ) s i n (+~1 R 2 s i n -
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I-.

1- 1

p [Since: sin a sin P = cos (a - 8) - 2 cos (a + 8)]

{( ri)
w2(w I + ,f3w2)

2 f t~-iRw1\+ Rw2 1 Rd

+w2(wl - r~w2) 3k7- £J

w2(w1+ /3w2) Co ( w2 ) -Cos(~)

+ 2 { Rwl + Rw) - (2Rw1)
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2(w-2 . 3w22) (wi - / W2) cos -. /

- /2Rwl,\

ARl + 2c

" (wl + /'3w2) COS R )

"2Rwj

(wi + /2) COS 1

-2 R 2 oRw

2( 32) jl [cos(773 Rw2  - cS (. Rw2 1

V7/3 w2 (COSQ -7 R 2) + COSQA+Ru)

+2uw2 COS() }
[Since: cos a +COS8 2 COS 2 (a 0 ) COS 2 (a -8

1 1

cos a + cos = 2 sin 2 (a + 8) s 2 (a - 8)
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-2  - 31 (2R l 1 (2Rw 2 ]

2W2 3I) (-2RW-3 w 2 2 cos 2 Cos Y"2"

+ 2/3: w2 cos 73)1

Therefore, 11 + 13

r -4 J (l2

W2(w2 _ 3w22) 00

V7 w2 COS RI Cos (Rw2)

+ V7 w2 COS 73:)

Now, 11 + 12 + 13

-4 {r3"w2w1 Cos + wi sin sin (Rw2)

wiw21 l 2_ 3w22
- / : wJw2 COs -7) Cos (Rw2)

- (11 sin (w2R) sin( )

+ 3 w2
2 sin w2R) sinwlR1
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W, . .- .L+ -
- 

-. i;.L-. ;- . - .. . -'. .. U . , . -.- . -- . .. • . - .- -. - - -.K - . .*... ~ . -. °..-

-4 ()~i COS (Rw2)~

- l (w12 3w22 wl
+ 3 2sin (w2R) sin)

Equation (A-1),

G2w) - 2 (11 12 + 13)

Rw
2 wl COS( 73) CO (Rw2)

21 2 x -2 wl COS(3
R W1(wl 3w2) Rj

-2 V7 w2 s iny-731 sin (Rw2)

=Equation (2-13).

130

............................................



APPENDIX B

PROGRAMS UEVELOPEU
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(SPECIFICATION ) (SPECIFICATION I

RECYPOLAR PT16mb

2-0

CONVERION SMPLIN

Fiur B-i. Flwcatsown SheAIonhpaogDhrte
proGram

132"l"

FREQUENC

...............................
OVER. 3600. -- a......- .



C PROGRANK: REO1D
IP C

C THIS PRGRK WILL TAKE A DATA SET: 'WDEFF' I REAL AND IJWIAY PORWT
C AND INEROIE ITiE MITS IN BEWEEND ShM3LS USING SAMPLING WmDREN
C APPWAE. PRESENTLY, 'THIS
C ]PROGRAM IS ALUMED MD TAKE 100 SMLE. IF MORE IS MXWU1PJZ) PLEASE
C CHANGE THE ARRAY SIZE OF COEFF AND THfE VALUE OF NUPU4
C 14sE-THE ARRAY SIZE-2* (NUMBER OF SAMPLES) +1
C !1NU:N1JlSR OF SAMPLS
C xiNC: manwDI2
C THE SAMPL[S ARE TAEDI AT DELTA, IUENCY OF 'FRK'.
C THE MMKUE14CY RANGE FOR DMWM.KLATDN IS SPECIFIED BY 'IITIAL'
C AND 'LAST'. lifE NUMIBER OF PINTSI IN 'DATA' IS 'NP1'. THE
C OUTPUT FIE IS SPECFIEI) BY 'FNAME2'.
Cr C THiIS M)GAM WILL LIMK WITH SIMC, JP=O, SUMD AND 'PEOTLIB

REAL DNITIM LAST
COMPLEXCOQEFF (201)DS3MDATA(2D0)
CHARACIU'*10 FNAME1 .PNAM32
CHARE con

tMll E'2IIJM +1
NSTEP200

IrIAL-.L
LAST12.i9
XINCE (LAST-IniTIL) /(NS1EP-1)

P1-3.14159265
C
C lifE 5JWMT3IDN IS FROM -N ID +N
C ODEFW - liHE ARRAY OF oDEFFiaENlI FOR iTl TERM IN lifE SiITON
C WHERE lifE IDEX -N IS RESPRESENI1 BY 1

*C +N IS FIES ENTED BY 2*N +1
C T - ASSUMED 0710FF TIME- 1/(2*SANPLING FRIOUDICY)
C
C DATA STCIURE OF FNAIE1
C N *NMBtER OF POIS IN liHE FILE()
C FlIIN :SWLLMT FREDUENCY USED(*)
C FRED iSAMID( FREDUENCY()
C ODEFF'%I); (3MAL.PGnARY) (*)

APT'I 2. ROMJE
2 FORIULT (Al0)

OPEN CUNT-8,NAWE-FAIE1 .TDP9w'CL')
READ(8,) N
READ(SM* FI

- READ(8*) FRED

IF (N.G;T.NUMJ CX) MD 888
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NDIM-2*N +1
C -

C INITALLIZATIDN

M 5 I-1d.14IZE
CflEF(I)-(O.,0.)

5 CONTINUE
READ(8,*) a2EFF(M
DO 10 I1.N-l

C
CDEFF (NJ41-I) -MWG (CWEFF (NUM+I+l))

10 COTINUE
Ca40E (UN1-8,DISP's'SAVE')

C
C SET ANY FlRH)UENCY( INTERPVLATIDN SPECFIED BELW FlKIN I ZERO
C NZR: NUMBER OF ZRO M BE PLACED
C

IF (FMIN.LE.FR!) Ol D 127
NZRDINT (FMIN/XI]NC)
MX 123 I-1,NZER

123 CON4TINUE
C
C STARTST INTIERPOUULATION
C (THIE SUMMTION IS PERORMD BY FUNCTION SUMID)
C
127 ILAST-INWr N-i) *FRED/xflic)

IF (ILAST. LT. NS'IEP) INDEX-IAST
IF (ILAST.GE.NSTEP) INDEX=NSTE
ID 20 I=NZER +1.InamX

DATACI - SUM1D((C(I-1)XNC+INTIAL) 'T*2.PIWEF.M5IZEDIM)
20 COTINUE
C
C SET ANY SPECFED FREUECY IMTHULATION HIGHER THAN M4NNFRBD
C TOZERO
C

D 133 I-IN]O +1.NSME
DATA(I-(0.,O.)-

133 COTINUE
C
C PLOT AND OPTIONAL WRITE IT A FILE: FNAME2
C

CALL JHD'I'(M!ANSI!, INITIA.XINC,0 .N9TEP-1)
23 WRITE (6 ,*) 'WRITE 'THE ITERFOLAMEDATA INTO A FILE?'

WRrE(6,*) 'D)YES. IN AMPLITIUDE AND PHASE(RADIAN) FORM'
WRITE(6,*) '2)YES, IN1 REAL, AND IMAGINARY FORM'
WRTE (6,) '3) NO, FORGET ITI'
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ACvEr 25,00MU
25 FRMUT (AD)

IF (COM1.8. 34) GO MI 9999
IF ((ODM1.NE.1l').AN4D. (COKftE.2')) GO MI 23
WRrr(6. *) 'S'IDRNGE FILE NAME:
ACCPEr 30,FNAME2

30 PDR1'RT(Al 0)
IF (aCM.BD.'2') GO MI 35

C
C CIII/FR MI MPIT'UME(LINEA) ANDV PHASE (RADIAN)
C

WD 33 1-l.NsTEP

XII~w-ATAN2 (AIMAG (DATACI)) ,REAL (DATA (W)
DATA(I) PLXO(REAL.XIMAG)

33 CONTIE
C
C OIJPTJM'IFlAME2
C STRUCTURE OF FNAME2:
C DAA(I:FREE COMPLEX PORWM'
C
35 OPEN (UNT-8.NWEENAE2 .TYPE 'NEW')

M 40 I-1.&91E

40 COTDI3Ep ~iOE (UNrrw8,DISE-'SAVE')
GOID 9999

8888 WRITE(6,') 'DEN)R:)I)T IXMUH SIPACE SPECIFIED IN MMIR GWAM
9999 O'Jp

EDD

1 35



C
C SiBR0Tnf4E: JH0IT
C
C THIS SJBiKUTINE WILL EDl RECTAWUM PECT ON A COM4PE ARRAY: 'TA'
C FOR REAL AND IWGI]NARY PWOT OR MAN"1UE (LINEAR) AND PHASE (RADIAN)
C PLOT.
C DATA :ARRAY NAME
C NPOINT :THE ARRAY SIZE
C ENIN :SMALLEST ELMN OF THE ABSISSOR
C FINCR :THE INCRMNT SIZE
C NSTART :THE START PWTrU(IND EX
C NLAST :THE LAST P0'LD7= INDE
C IF (!NLAST.G.Nd&INT) THE LAST POINT PLOT=IE IS NPOInn

C THIS REQUIRES THE SUPRT OF 'E0LME.
C

SUBIUTINE JPr CDATANIUINTD PHI. FINCR.IN1!PRT, iLAST) 1

CHARACER COM
COMPLEX DATA (NPOINT)

DIJENSIDN YAXaIi(9000) ,Y~aXS2(9000) ,XAS(9000)
PI-3.14159265
J'SIZDR9000

C
C INITIALIZATION
C

DO 3 I-i .I'IZE
YXS 1) -0.
YAXIS2 WI -0.
XAXIS (1) -0 -

3 ClONTIE
5 WRrrE(6,*) 'EO WUJ WANT REAL AND LIGD Y PEDT?Y/N'

ACCEP 6, CD14
6 FORMA~T(AD)

IF (NLAST.Gr.NFOINT) N-AST=NIDINT
NPINLAST-NSTART+l
IF (COM. ED. 'N) GO M 15
IF (tX*.NE.Y') GO MD 5

C
C REAL AND IFGINARY PREPARAT'ION
C

D 10 I-1.NP
YAXISI (1) -REAL (DATA (I+NTART))
YAXIS2 (I) -AImAW(DATA (I+NSTART))
XAX(IS(IVm(I-l1*lTART)*Fn4C + EMIN

10 CONTINUE
GO MI 25

C
C GENERATE AM4PLrIUD AND PHASE

15 D 20 I-l.NP
YA2XIS (1) - (I+NTART-1) *FflNaR +FKfl
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YaSi (I) =CABS (DATA(I+NSTAT))
IF (REAL (DATA (I+NSTART)). 9D. 0.) GD M 18
YwaS2 (I) -AZAN2 (AI1AG (DATA (I+NSTART)) ,REAL (DATA a+NSTMiT)))
GD TO 20

is IF M(AII (DATA (I+MTART)) .M~.0.) YXIs2(I)0O.
IF CAMG(DATA (I+NSTART)) LT. 0.) Y~aXS2(I)-PI/2
IF (ADlA(DATA(I+NTART) ).GT.0.) YAXs(I)-PI/2

20 CONTIhUE
25 CALL HP!mG(xAXIs.-Ymam.9000 .NP.1 .0.1)

- CAL L NTIG(XAxaSYXIS2.90O0,NP,1 .0.1)
RETUN
Elm
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C OC)MPEXC FUNCI71DN MD

C THIS SJBIUJTINE WILL DOl SUMMATION7
C X - NEWq HkRAIEE
C Y - COEFFICIENT ARRAY
C MSIZE-SIZE OF THE (DEFFICIENT mmRy
C N - NMBhER OF OJEFFICIENT ARRAY ELEME1m UW~ HAS KN-ZR VALUES
C NDT:BDMH MIZE AND N ARE OME NUMBEERS

COMPLEX FUNCTION SJKI.D(X,Y, MIZE, N)
EXTERNAL SINC
COML*EX Y(MSIZE)
PI-3.14159265
MED=MSIZE/2 +1
SJM1D-Y (MED) *SINC 0X)
D 5 1-1.N/2

SU aD-SUMD4Y MSIZE/2-i+l) 'SINC(X+I*PI) +Y (MSIZE/2+I+1) *5fNC (X-I*pi)
5 COTINUE

EN4D
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Ic
C FUNLTXDN: sixC
C

-c C HI SU15 BROUTINE WILL al)LAZL' SIN WX
C WHERE X IS ASSUMED M BE IN RADIAN'S
C

FIUNCrION SINC(XW
IF (X. ED.O0) QGD W5
SI14O-(SIN(W)/A

V GO M 10
5 SINO-1.
10 RLE1UIW
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Kc

C ."

SC - 5 R:

C THIS ROGRAMI WILL GENERATE ALL THE ANGLES AND FREQUENCIES
C FOR THE GRID IN THE FREQUENCY DOMAIN. THE DATA ARE
C ARRANGED IN ORDER '4 SMALLEST ANGLE ID THE LARGEST ANGLE.
C (0 TD 2*PI) THE SIULLEST FS)MUENCY
C RADIUS IS STDRED. SO AT THE TIME OF MEASUREI ET, ONLY
C MULTIPLICATION OF THE RADIUS IS NECESSARY. 4

C
C THE GRID vOINT ARE WRITE 11M FILE: 'OUT.DAT'
C THE DATA F)RMAT OF 'OUT.DAT':
C FMIN.FWAX :FREQUENCY RANGE SPECIFIED(2E5.8)
C FDELTA :SAMP ING FRWMUECY (E15.8)
C NVOINT :NUMBER OF POINTS IN THE FILE(18)
C ISO,RADIUS :ISD&N. NN-IS3O)PIC SAMPLING IS USED(A2)
C :ISOwT, ISOTROPIC SAMPLING IS USED
C : RADIUS:RADIUS OF THE ISOIROPIC CEL 4IN W(El5.8)
C ViV2 :VECIDRS USED TD DEFINE THE SAMPLING LATTICE(4E15.8)
C Ul.U2 :VECIORS USED MD DEFINE THE PERIDDIC LATTICE(4E15.8)
C DATA(*,1) ,DATA(*,2): DATA(4E15.8)
C DATA(*,1) IS THE MEASUREMENT ANGLE AND FM.3UENCY ARRAY
C DATA(*.2) IS THE INDEX SPECIFYING HOW MANY UNITS OF
C Vi.V2 ARE USED
C
C WARNING: SIZE OF DATA IS (10000,2)
C
C LINK PFRID, GENI.GEN2.SEARCH. INS T, IVH.NDRMAL.'SSP
C

COMLEX V .V2 .V3 .V4 -. U2 .DATA(10000.2)
DIMENSIDN W0RK1 (2) ,WORK2 (2)
REAL MI'. G2 .AXl, MARG IN. MTR IX (4)
CHARACTER ISO
4SIZ-10000 .1
PI-3.14159265

C
C START WORKING
C
2 WRITE (6,*) ' LCWEST AND HIGHEST OPERATING FREQUENCY IN HERT'

ACCEPT *, FMINFMAX
IF (FMIN.GE.FhAX) GO TO 2

3 WRITE (6.*) ' ) YOU WANT TDO ISOTROPIC SAMPLING 7 T/F
AOCEF'r 4.IS"

4 FORMT WAl)
IF (ISO.BO.'F') GO TD 5
IF (ISO.INE.'T') GO TO 3
WRITE (6.*) ' DIAMETER OF NORMALIZATION IN MM?'
ACCEPT *,RADIUS

C
C DEFINITIDN OF ISOTROPIC VECIORS
C
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X2-O.

Y2-1.

C CASE OF PARALLLPIPED~ic CEWF~IEET

5 WRITE (6,') 'THE OBJECT IS ASSUMED MD BE QTZ4FINED MD A mARALLY.TfVfl
WRITE (6.') ' NM)RULIZAT31N FKCIR IN MH'

WRITE (6.') 1VECIRi IN4 X.Y

WRITE (6,'*) 'VECIR2fN X,Y:

6 WRITE (6.') 1SAFETY MARGN PClR tN THE TIM WAVE0N4'
* -ACCE *.NMIfl

UlQIPLX(X.1 Y1)
U2-4PLXOC2.Y2)

MTRIX (2) -C(Yl)

MATRIX (4) - (Y2)
C
C INV WLL M MATRIX INVERSMt4. THIS SUBF40UTIN IS 11N SSP
CU CALL MIIV(N&TEIX,2 .D,WPX1.iURK2)

C IC'!! THAT Vi AND V2 IS TAEU4 FlTM THE 7RAZ4SKSE
C OF TEE INUYSE OF MATRIX. THIS IS MD BE CONSISTENICE W1II
C DDT PwCOUC OF U (I) AND V(J) - rfL.TA(LJ)

C U IS IN4 SPATIAL DDMI
C V IS 114 FEMUENCY DOMAIN4
C AXAM ')-(X-CDMPCNTY-DM[IONE2T)

V1Q1HLX (MATRIX (1) MRTRIX (3))
V2OIPLX(NATRIX(2) ,IWIRIX (4))

PHASE AAN2 (AIMRG Vl) ,REALC(Vl))
MG2-BS(V2)
PHASE2P=AA2 (ADMW (V2) ,ReAL (V2))
7TE'AS (PHASEl-HIMSE2)

C
C PHASES ARE NCRMLIZE D MTEE RANGE O:2*PI
C

CALL N0RMhL(WHASFI)
CALL NDRM~l (PEASE2)

C
C SFACDR: FREDUDIY SA14PLDG FAwCIOR
C
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SF -1~ (3 EID (RADUS- -GI

FAIR.1)/RADIUS *MARGIN)TA*

MAXim (FKAXFDELTR)
C
C S DRE TOE FIRSTPA) VECI1ORS ID 70E ARRAY 'DATA'
C

IF (PHASE2.LT.HASE1) GO MI 11

DATA (.2) OIPLX(l.O)
DATA (2.l1) uOIHPLX (PASE2. MG2)
DATAk(2.2) -Q4PLX (0.1)
GO MI 12

11 DATA (1 .1) -CMPLX (PWAE2 .KkG2)
DATA (1. 2) -CMPLX (0.1)

DATA (2.2) -CMPLX (1.0)
12 NFINT-2
C
C 'M GENEATE THlE FIRST QUADR5AN POINTS
C POINTIS ARE GENEATED AND SMIRED IN SUBROUTINE GI AND GEN2
C

IF (THET.LE.I/2.)
& CALL GEN1 (Vi .V2 .M XI dx DATA, HSIZE, NFOINT, 1 11)

IF (THEr.Gr.PI/2.) -

& ~~CALL Gf42 (VI .V2 .MW ,1(.DATA, l'LIZE. NK)IWI!,1 .)
IF (NEINT.GI.M4SIZE) GOl MI 888
V3-V1
HASE3 - ATAN2(AG(V),EAL(V))

CALL NRMAL(P1ASE3)
V3-O0X (PVASE3 .CABS (V3))

C
C SEARCO4FOR 1flATIO' :1 I M PLCE THIE POINT
C

DCSEARQI (V3 .DATA. 4SIZE. NRDINT)

C
CA INSERT THCE PON DW H rD PMEv 1.,O

C
C U 'INSER4TE fLOCE NONDA, MSU~I JO 3,-lS

C

IF (1HETA.LEPI/2.)
& ~CALL GEN2 (VI .V2 .191.9.(.DATA.MSIZE,NJOINT,-1,1)

IF (THMWG1'.PI/2.)
& CALL GEN1 (VI .V2.M~X1dlX.DATA,M4SIZENJOINT,-1,l)

IF (NJOflNr.GT.I4SIZE) GOD MI 888
V4-V2
JWASE4 a ATAN2 CAIW (V4) ,REAL(V4))
CALL NORMNL(PHASE4)
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L V4-aMILX (PHASE4 .CXBS(V)
LOC-SEARCH (V4 .DPTAdEIZE, NIT)
CALL DlSET (DC,1 h1 , DATA,SIZ*V4 .0 .,-l.)

C
C NOW MD GUNERATE THE OTlHR 7W~ QUAERANI

IF (TmEMI.LEP/2.)
CALL GEN2 (VI .v2.MX .KW,1 I&TIIZE. NF3DA.1 .-1)

IF (ivffM.ar.PI/2.)
& ~~CAL GEN1 (Vi .v2.IM.MX,TAMSIZE,NIIN4T,1 .-1)

IF MOINr.T.M.1SIZE) OD 'M 888
IF ('mLLE.Fi/2.)

& ~CALL Gall (Vi .V2 .I91 WX1 .DTA, M ENIOIT-,-1)
IF (TIIE'W.GT.PI/2.)

& ~~CALL GEN2 (Vi .V2 .NW1.WX .fATLIMSIZE,NK)IN,-1 .- I)
IF (NlINT.Gr.MSIZE) OD MU 888

C
C OU7PiUT GRID lOINS fIM FILE: OUT.DNTl

OPEN (MUTr-8,NID- 'OUT' ,TYPE'NEW')
WR1TE(8.301) NIN.IWAX

301 FOR~W(2Em5.8)
WRTE(8,305) EDELTA

305 EORMWE15.8)
WRITE (8,310) NIOINT

310 FORM~T(I8)
WRE(8,315), IS,ADIUSU315 1OBWTA2.I5.8)
WRf'E (8.320) 'JIAJ2

320 FORATEm5.8,2E15.8)
WRTE(8,320) l.12

* DO 20 Jinl.NEDIT
WRITE(8,320) DATAk(3,1 PDM(J,2)

20 OOTn;E
aU)E (UNI-8,Dsp'MV')
(D 'M 999

888 WRrTE 6.*) *ERWR:SPECIFIED ARRAY SIZE TO SIPLlI'

END
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C
C SUBROUTIN4E: GERI
C
C THIS SUBF4UTINE WILL GEN4ERATE ALL THE GRID POINTS WITIN 1 THE TWO
C VECIlORS Vl -V2 (14 THE W1 DIMENSINAL PLANE. THAT IS IF THE NGLE
C IS ACUTIE.
C
C VI :FRS VECIDOR
C V2 :SECON4D VECIOR
C MAX :MAXIMM FREQUENCY IN EACHi VECIOR DIRECTION
C AMAX :ABSOLtJTlO MAXIMUM FREUENCY
C DFILE :DTA ARRAY FOR SM2RKGE
C MSIZE :SIZE OF WFILE
C M :NMBER OF POINTS GENERATED
C ISIGN :SIGN OF Nl (W.'VI)
C N2SIGN :SIGN OF N2 (N2*V2)
C
C THIS REQUIRES THE SUP)R OF SEARCH.NORMAL. INSERT

SUBP11UTINE GE41 (Vi .V2.MALX,AMX,DFILE,KSIZE,M,W.SIGNN2SIGN)
EXTERNAL SEARC
COMNIEX DFILE(MSIZE,2) ,VE=iR,V1AJ2
REAL MAG, MAX

C
C CALCULA7E THE NMlBR OF UNITS IN EACH VECTOR DIRECIINS
C

Nl-INT (MAX/ (CABS (V))) + 1
N2-INT(MA/(CAtBS(V2))) + 1
ED 5 I-1.N2

DW 10 J-1141
VEC1MR-J*V1*NISIGN +I*V2*N2SIGN
MlhGCABS(VEClOR)
IF (MFL.GT.AMAX) GO MI 5
RHSEATN2 (AIMAG (VECIUR) ,REAL (VEciR))

CALL NDRMAL(RiASE)
VECIDR=Q4HX (PHASE MA)

C
C SEARCH THE LOCTlON
C

WO.-SEARQC CVEC1DR,DFILE,MSIZE,.M)
R.7FLOAT (3)
RI-EIM(I)

C
C IN~lER THE DiATF
C

IF ((NISIGN.LT.0) .AND. (N2SIGN.LT.0))
& CALL INS4U( CC,MDFILEM4SIZE,VECIR-P.-RI)

IF ((NOLSIGN.LT.0) AN4D. (N2SIGN.0r.0))
& CALL INSET (WOC,M,DFILE,MSIZE,VECIDR,-A7,RI)

IF ((ISIGN.GT.0) .AND. (N2SIGN.LT.O))
& CALL INERT(LOC, M, DFILEd4IZEVEC=tR,PJ,-RI)

IF (QflSIGN.G'.O) .A4D. (N2SIGN.GT.0))
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V & ~ ~ CML fl4r(WDC,M,DFILE, ISIZVEC1MR.R3,RI)
10 ONTIME
5 COTDVE
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C SUBROUTIM4: GEN2
C
C THlIS SUBF40UTN WILL GENEATE PI~NTS BEDW VBX'I0RS Vi .V2 IF -

C THE ANGLE BEIWE THEMi IS MORE THAN4 90 DEG~REES BUT
C LESS THAN 180 DEGREES
C
C
C Vi :FIRST VEXC1DR
C V2 :SECOND VECMIR
C MAX :MAXIMUM FEQBUENCY IN EACHI VEC'IOR DIREC'E1N
C AMAX :ABSLUTION M&XIMhIM FREQUENJCY
C DFILE :DATA ARRAY FOR SIDRAGE
C MSIZE :SIZE OF DFILE
C N :NUMBER OF POINTS GENEAE
C NISIGN :SIGN OF NI (W.*Vl)
C N2SIGN :SI3GN OF N2 (N2*V2)

C

SUBROUTINE GEN2 (VI .V2 .MAX.AkX. DFILE, IIZE. N. W.SIGN. 2SIGN)
EXTENAL SEARCH
COMPLEX DFILE (MSIZE. 2) ,VELCIDR,V1 .V2
REAL WLA, MAX
LOGICAL SAME
Pi- 3.14159265-
THEITA=ABS (ATAN2 UkAIR (Vl) PREAL (VI)) -ATAN2 (AIIWh (V2) ,PPAL (V2)))
)OIAXWLX/SIN (THETA)
CALL GEN1 (Vl .V2 -XMKX, AMXDFILE MSIZ E, MWSIGN. NSIGN)
IF (THE1LED.PI/2.) GO MD 555
?aCDRRECNO0
N2CDRRECP-0
IF (AMVD (X1AX,ChBS (Vi)).Gr. 0.) NICORRECr-l
IF (PJD(XMhX. CABS (V2)) .Gr.0.) N2CDRRECTl am
I-INT (XMAX(CABS (V))) + WDCRRECr

N2-INT(XNAx/ (CABS (v2))) + N2aDRREcr
12INT (MAX/ (CABSC(V2)))

C
C 70 CHECK OUT WHICHI R~DN MRE THE VCRS IN
C

V~vOR-V1l41lSIGN + V2'?42sIGN

IF ((REAL (VECIlDR)*Ali'UG(VECIDR)) .LT.0) SAME-.FALSE.
IF ((REAL (VEDR) AIM (VECR)) NE.0) Go M 3
VEC1DR-2.V1'n *N1SIGN + V2*N2SIGN
IF ((REAL (VECTOR) 'AIW9 (VECIDE) .GT.0) SAME-.RVE.
IF ((REAL (VECIDR) *AII9G(VECMU)) .LT. 0) SAL'E-.FALSE.

3 CIEO.O..
DO 5 J-1.14

DD 20 I-I2.N2
IF(CHECK.GE.2.) GO MD 50
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'VECIVR*V1*N1SIGN +I*V2*N2SIGN
ihG-aGS(Vriua)

C SM SURE MAW aMa Is DODIEENIED PROPELY

IF (GODT SAlE) .N4D. ((REAL CvrCuR) *AIM (VrloR)) .aI.0))

& alEacKCiECK + 1.
&IF ((AaE).AND. ((REAL (VrMR) *AnWG(vcoR)).LT. 0))

OIECXmCIEOC + 1

C NAE SURE THE POINT GENEATED Is INSIDE 'THE a~L

'K C IF (MPG.GT.ASX) GO MD 5

C MAXE SUREm 'DM!011IS DECREWD PROPE ~RLY

IF (GODT SALS) .AID. ((REAL(VECDR) *AI~mG vrMOR)) .GT.0))
& OIECIOIECK - 1.

IF ((SAM') .AND. M(EAL (VrCoR) *Anw (VCUR)) .LT. 0))
£ OIEaKCIEaC - 1.

PHASE-ATAN2 (AIM (VWIDR),REAL(VCWIR))
CALL NORAL (PHASE)
VECDROIHLX (PHMASGW)
LOC-SEAROI (VWDR, DflLE, JE, )
RJ-FlfAT (W
RI-FLOAT (I)
IF (UfWaSINO) M.AND. (ISIGN.L.0))

CAM LL D4E(LOC,N.DFILLIUIrZEVrDR.-RJ,-RI)
IF (G4ISIGNLLT.0) .AND. CNasIGlt.O))

& GALL DsflT (WDC,,DFIEJEIZE,VrIDR,-R7,RI)
IF (OISIGN.ar.0.ANt. (LSIGILL.0))

& CALL ThSE?(WCM,DFILEiESIZE,VrIORo,-RI)
IF (ISIGN.ar.0) .AND. (iuSIG.ta.0))

& CALL D4E (WOC,M.DFLE,IEIrZE.VWIOR.I,RI)
10 COTNMUE

50 I1-J2

NASE-M7W2UCAWI(VBaDR) ,REAL( CrMR))
CALL NORMAL (PHASE)
VECIDR-04H 1 X (PHASE, MwG)
[DC-mEARC (VECIRDFILE,IUIZE,M)
RJ-FAT (3)
RIFLQ01 (I)
IF (Q4LSIGILLT.0) .AND. (NCSIGN.LT.0))

L & CALL DINSR([DC, M,DFILE, MSIZE,VECIR-R7.-RI)
IF (GflSIGN.LT.0) .PD. (N2SIGbLG;T.0))
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& CALL INET(LC, M,DFI:LE,MIZE,VBIDR,-RJ,RI)
IF ((W.SIGN.GE.0J .AND. (NSIGN.LT.0))

&CALL I:NST(LC,M,DFILE,14IZE,VEIOR.IRJ,-RJ)
IF ((baSIGN.Gr.0).AND. (N2SIGN.Or.o))

& CALL INSER(IC,M,DFILE,MIZE,VE1t)RR3,Rj)
20 CON~TINUE
15 COTINU1E
555 REIrn

EN
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C ..

c
C FUNCTION: SEARCH
C

. C THIS ROLNMM WILL SARCH THE LOCTION WERE THE ELEET
C FITS INID A D.TA ARRAY. THiE ARRAY ASSUMES AT LEAST IWO
C EIMBERS. 7W-I EEMVT MAY HAVE 3 POSSIBILITIES:-
C 1) TME REAL RT IS 111E SAM IN 7IE RETURNED TIDN
C 2) THE REAL MR7 IS THE SAME IN THE REMME ILOCTIDN +1
C 3) THE REAL PRRT IS BIWE TE AOVE T10
C
C THIS 1 FUNCTION E OYES BINARY SEARCH TECHNIQUE W LOTE
C
C ELENT :CMLM ELEENT WD BE PLACD WITH PRIDRITY OF THE
C REAL PART O R THE IMAGINARY PART
C DFILE :ARRAY FILE W BE SEARCHED AND INSMED
C MSIZE :SIZE OF DFILE
C LAST :NUMBE OF ELEMNT IN DFILE
C

,UNCD SAR1 (ELENT, DFILE, sIZE, LAST)
OMPLEX DFILE(MSIZE,2) ,flENT

LOCI-IA5
IF (REAL(ELIKT).LT.REAL(DFILE(LC=,1))) GO MD 147
IF (REAL(ELENT).GT.REAL(DFILE(LOC2.1))) GO D 140

120 10 (I Ci +10C2)/2
IF(LOUC.ED.WC) GD WD 150
IF (REAL(ELEMENT).LT.REAL(DFILE(L ,1))) GO D 125
IF (REAL(ELERM).G .REAL(DFILE(CI)) )D 'W ) 130
GO W 14512S 1.WX w=f

GO M 120

GO M 120

1145 CDI 155 ,140 SEARQ - L001
GO W 155

147 SEARCH - =C1-1
GO M) 155

150 ARH =

155 RETURN

=.s
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C~ 1~

C SUBRUTINE: INSER
c
C TIfhS SUBOJUTINE WILL INSERT THE EL T D HIE FILE
C IF THE E HAS A DIFFERENT PASE OR A SMALLR
C MAGNIUE. THE EAE HAS A SENSITIVITY SPECIFIED BY THE ERROR.
C
C NSTART :dL0TION OF THE ELEMIT
C LAST :NUMBER OF ELDNIS IN DFILE
C DFILE :ARRAY FILE D BE INERTED
C MSIZE :DIMENSION OF DFILE
C EENT :CDMPLEX ELEENT D BE INSERTED
C V1INX :NUMBER OF Vi USED
C V2NDEX :NUMBER OF V2 USED

SJBRUTINE INSER (NSTART, LAST, DFILE, MSIZE, ELEENT, Vi INDE,V2INDEX)
COMPLEX DFILE(MSIZE,2) ,ELENENT
PI-3.14159265
ERJlR- 0.01*PI/180.
IF (NSTART.NE.LAST) GO D 200
IF (ABS (REAL (ELEENT) -REAL (DFILE (LAST,1M) .LT.ERROR) GO M 290
LAST - LAST +1
DFILE (LAST, 1) -EEMN
DFILE (LAST, 2) ,OU.X (VI IN EX,V2INDEX)
GO M 295

200 IF (NSTART. E.0) GO D 202
IF (ABS(REAL (ELET) -REAL (DFILE(NSTARTI))) .LT.EROR) GO TD 285
IF (ABS(REAL(DFILE(NSTPA +1,1))-REAL(EL4EMT)).LT.EIRO)R) GO D 280

202 CALL FUSI (NSTART+1 .LAST,DFILE,MSIZE)
DFILE (NSTARTI1 ,1) =ELMENT
DFILE (NSTART+ ,2) -iCMPLX (Vi INDEX, V2 INDEX)

"GO 'D 295
280 IF(AIMAG(ELENT).GE.AIM (DFILE(NSrARTI1D))} GD TO 295

DFILE(NSTART+1,1) - ELEMENT
DFILE (NSTART+I, 2) -IP!Lx M (INDEX,V2INDEX)
GO : 295

285 IFAIP(ELEENT).GE.AIW(DFILE(NSrART,1))) G0 D 295
DFILE (NSTART, 1) "EL NT
DFILE (NSTART, 2) aC'LX (VI INEX, V2INDEX)
GO TO 295

290 IF (AI19W (ELEMENT) .GE.AIWM (DWILE (LAST, 1)) GO 'I 295
DFILE(LAST,) -ELEMENT
DFILE (LAST, 2) ,,OLX (VI INrE,V2INDEX) r"

295 RETURN
END
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C SUBROUTINE: PUSH

C THIS SUBICJTNE WILL PUSH ALL Mf1 IY4TA IN~ 'DE'ILE' By 1 Fosrrmt4
C THE OPERATION IS SPECFIED BY NSTART1 -THlE BMINNING OF PUSH
C LASTi -MEE LAST LOMT3XN OF OFILE

SJBICUTDIE PUSH (NS!AR1 ILAST1 .DFILE.MSIZE)
V cDNCOMPLEXDFILE(NSIZE,2) ,2MW1 .1Y24

DO5 I-1,N

TEMP2DFMlE (LASII+1-I, 2)
DFILE (LASI+2-I, 1) -IMP1

k. DFILE (LASI+2-i, 2)-7EIMP2
5 CONTMflE

LASL- LAST1 +1

EDD
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C SUBROUTINE: NORMA9L
C
C THIS SUBROUTINE WUll IURIQLIZE A PHASE RAGE OF (-PI 10 PI)
C M 1A RANGE OF (0 7) 2*PI).

C ALPF4A: ANGLE IN4 RADIAN M BE NDRM@.LIZED

SJBRaJ'rINE NR11AL (ALPA
PI=3.14159265
IF (ALTHA. LT. 0) ALRIA=ALPHA +2. *PI
RE1UM
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C
C PRGRAM: INTERPOL

mm C
C THIS PROGRAM WILL INT'RMOLATE F)R 3 OPIONS.
C FILE FRAME SIDRED THE GRID POINT INFORMATION GENERATED PREVIDUSLY.
C THIS PROGRAM WILL REPEAT ITSELF, EXIT ONLY BY OONTRL C
C THIS PROGRAM LINKS WITH 'HWILIB
C
C THIS PROGRAM REQUIRES AN INPUT OF A MEASJR U4NT FILE :FNAME
C THE STRUCTURE OF R% : A
C FMIN. FMAX -@XIMUM AND MINIMUM FREDUENCY USED IN HZ(2E.5.8)
C FDELTA -NORMALIZATIDN FACIDR IN FREUENCY(IE15.8)
C NK)INT -UMBER OF POINTS IN THIS FILE(I8)
C IsoRADIUS-ISO-'T' IF ISOTPIC SAMPING WAS IflNE(A2)
C -ISOm'F' IF ISOTROPIC SAMHLING WAS NOT DONE
C -RADIUS IS THE ISOmOPIC CIR(CLE RADIUS USED IN SEOI4D(E15.8)
C ViV2 -VECIDRi AND VECiDR2 IN FRMfUENCY IDMAIN(4E15.8)

I' C Ul.U2 -VECTORI AIM VECIOR2 IN TIME/SPACE DDMAIN(4E15.8)
C *.*.*,*-REAL AND IMRG MEAaJRDE2T;N,N2 EUR THE MEASUREMENT(4E15.8)
C (MAKE SURE ALL THE ABOVE ARGURPINIS ARE SEPARATED BY COMMAS IN ENAM I).
C
C NI*V.,N2*V2 SPECIFIES THE SAMPLING LATTICE
C
C LINK INT L,WFILE, SUM, COiNSTI .CONST2, FUNCi .FUNC2 -FUNC3 .SINC,-
C RALOT, ELIM, ' O BLI-
C

COMPLEX SUM,£ATA(360) ,Vi.V2.UIU2.ERW,0DEFF(10000.2) ,TEKP1
CHARACTE ISO
CHARACTR*10 FNAME
MSIZE-10000

C
C NDATA :SPECIFIES THE NUMBER OF ANGULAR RIN'IS
C NUN :SRCIFIES THE NUMBER OF FRMUENCY POINTIS

NDATA-360
NU1-201
PI-3.14159265
WRITE(6,*) ' FILE WHICH HAS GRID POINT M'AS -R"T?
ACCEPr 50, NAME

50 OR9i T (Al0)
OPE(UNT"9.NA E-AME,TYPE-'OLD')

C
C READ IN NECSSARY DATA
C

READ(9,550) F74IN.FHX
550 FORPlT(2E15.8)

READ(9,551) EDEL
551 FORMT(Ei5.8)

READ(9,552) NPOINT
552 FORMAT (18)

IF (NF)INT.GT.MSIZE) GO T 8888
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READ(9.553) IX.,RADIUS
553 FORMT(A2.E15.8)

READ(9.554) V1.V2
554 FORT(2E15- 8,2E15.8)

RE.AD(9.554) U1,U2
V1=2. 'PIFDELTA'V1
V2=2 . 'PI 'TDUTA'V2
U1 .fl/ (F DELTA,)
U2=1J2/FD)ELTA

C
C OPTIONS MD GUARD AGAINST MEASUREENT DATA IN FORMAT
C OTIHER THlAN REAL AND 1190 IERY
C
570 WRITE(6,*) 'DATA IN4 WHICH FORMAT:1) REAL AND IrAG'

WRITE (6.) 2) AMP (LINEAR) AND PHASE (RADIAN)'
WRITE (6,)' 3) AMP (wB) AND PHASE (RADIAN)
WRITE(6.*) '4) AMP(rh) AND PHASE (DEEREE)'
ACPT *,.NDM1
IF ((NKDM.GT.4).OR.(CMlM.LT.l)) GO W 570
Do~ 560 I=1.NIOINT

READ(9.554) MIDAI.XIWAG,W:EFF (I,2)
IFQCa)l.EJ.1) GO MD 580
AMP-XREAL
PHASE=-XDW
IF((NW14.HJ.3) .OR.(QXDM1.ED).4)) AMP=10**(AMP/20)
IF(NCDM1.ED.4) PHASEPHASE*PI/180.
)GEALAMP'XDS (PHASE)
XI 190-AMP'S 14(PHASE)

580 CflEFFCI, 1) =CLX (XREAL.-XIZ9O)
560 CONT1IUE

CLOE (UNIT=9 .DISN' SAVE')
C
C ASK FOR 'DHE TYPE OF INIURPOLATIDN
C
5 WRTT(6,*) '3 CICES :1) INTIEPOLATE FOR 1 ASEC ANGLE AND OUTPIT'

WRITE (6.)' 201 FREQUENCY POINS.'
WRITE (6.*) '2) IN'ThIOLM'E FOR 1 FRIDQUER'CY AND OUTPUT
WRITE(6,*) '360 DEGREE POIS.'
WRITE (6,' 3) INTERPOKLATE 11110 2-D SQUARE GRID'
ACCEPT *, NWDM

C THE BRANCHING OF DECISION

IF (NWDM.11X2) Go TO 200
IF (NCDM. ED. 3) G) ID 3 00
IF (NWDM.NE.1) GO MD 5

C
C ID INTEROLATE FOR 1 ASPECT ANGLE BUT 201 F!REQUENCY POITS
C
10 WRIT(6.') 'FRBJUEIJCY RANGE? LOW ID HIGH IN4 HZ'

ACCaPT **Fl4IS,Fl4AXS
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IF (FMINS. GE.l'1AX) GO TO 10
WRTI'(6.* WHICHO ASPECT ANGLE? (degree)
ACE~ *. ANL
Al.GLE)-AINLE*PI/180.
FINGC= (EW~x-FMINS) /(N-1)
DO 15 I-1.UM

WRIT(6.*) 'WORK[NG CN: '.I,' LAST ONtE: '.NUK
AFREQFMINS + FINCR* (I-i)
IF (AERO. ED. 0.) CD 'ID 13

C
C MMK SURE THE DIRLATDN IS DONE BE'IWE4 THE MEASURD FEUENCY
C RANGE
C

IF (((AiiEx).ar.RFgO.OR.((AEIMU).LT.Fn4)) GO TOD 13
E=cPLX (ARE*WOS (ANGLE) ,AFRWE*SlNW4G?~LE))

DATACI)- SU1 (nR,CEFF,MtSIZEV1.V2 .U1 .32. .IS, NPOINl,RADIUS)
GD 'ID 15

13 DATA(I-(0.,.)
15 CON~TIUE
C
C PLr AND WRITE FILE
C

CALL RV- (DATA, NUM, MINS, FINCR)
CALL WFILE (DATA, NDATA, NUIM)
GO TO 5

C
C SECOND SECrION OF THE PRORAM
C TO INTEREOLATE '12R 1 FRBUEN4CY, BUT 360 DEJGRSE F0IWI

C
200 WRITE (6, *) 'WICHIO EREDUflCY? (z)

ACE~ *, AED
DO 205 I-1.NDTA

WRT1'(6.*) '1ORKING ON: '1,,' LAST ONE: '.DFTh
AElJD- (I-1) *PI/180.
IF (AFEDP.Er.0.) (ID TOD 203

C MAKE SURE 7HE Df=LATI'IN IS DONE BMNEM THE MEASURD FR50UENCY
C RANGE
C

IF (((AERB).G.FhX).OR. ((ARE).LT.FMIN)) OD WI 203
FRED-CKHLX (AM'CDS (ANGLE) ,AFEDM'SIN (ANGLE))
DATA(I)- SUM (FRBD,CDEFF, MIZE,V1 .V2 .U.L ISO, MNT~l, RADIUS)
00 TOD 205

203 DATA(I-(0.0.)
205 CONTIUE
C
C HL~r AD WRITE THE FILE
C PLARP :A SUBRUTINE IN 'HDH.IB
C

CALL K)LARP(DATA,3.5.3,1P(DATA,1,1)
CALL WFILE (DATA, NDTA, IYITA)
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GO M2 5
c
C THIRD PART OF TE PRORAM
C IND TERPOLATE IND A 2-D SOUARE GRID
C (DUE ID TIME (CONSMITION. THIS IS NOT IMPL.EME'ED. BUT IT CAN
C BE 1NE SIMILARILY AS PART 1 AND 2)
c
300 WRrTE(6.*) 'NOT READY YErI'

GO m 5
8888 WRITE (6.*) 'ERERR:THE SIZE OF INPUT FILE IS LARGER IAN SPECIFIEDI' '"

GO M 5
1D

, -4
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f

C WOMH.EX FUNCTION4: sum
C
C 7HIS FUNC10N WILL DO) THE SUMMATIDN OF F (fa*Vl..2*V2)*G (WaN*VI-WtV2)
C (EDUATION 2-9 114 17IS WRITE UP)
C FOR ALL AVAILABLE VALUE OF NI] AND N2 114 flE FILE Fl4AME
C
C FRED :COMPLEX (Fl, F2); t LOkTIDN IN fliE FRUEN4CY PLANE

VC CDEFF :G)mmm~ ARRAY s'1Rflc 7E SAMPLED VALUES
C MSIZE :SIZE OF ODF
C VI .V2 :VECIDR 1 AND 2 IN THIE FREQUENCY DOIN1
C U1.U2 :VECIDR 1 AND 2 IN 131E SPACE DOMAIN1
C ISO) :T-ISYUROPIC SANPLnG ,F-NON-ISOFIROPIC SAMPLnW Al)
C NK)INT :NUMBERl OF NON-ZR ELEERI 114 (DEFF
C RADIUS :RADIUS OF 7EE IRHPIC CELL
C
C 7HIS REQURE THE SUPRT OF aiNSriIt4OST2

COMPLEX FUNCIODN SUM (FRHD.C)EFF, 1'SIZE,V1 .V2 .t. ,U2 * ISO, NPIDAT, RADIUS)
CHARACIT IS)
COMPLEX FRWX,Vl .V2 .Ll .U2 .W, CDEFF (HSIZE. 2)
PIft3.14159265
SUM-OIHLX(O.,O.)

C
C CONVERSION OF FREDUENCY INMI RADIAN FRBUENCYU C RD2.*PI*FRB

DO 5 I-In.NPOIN'T
WFRE-REAL ((DEFF (1.2)) V1-AI.WG(COEFF(I,2) ) V2
IF ISD.Eo. 'T') SJN=sJM + CDEFF(1,1)*CONsT1 (RADIuS,W)
IF (ISO.BJ.. 'F') SUM-SUM + COEF'F(I,1)*CON~I2(ft.U2.W)

5 OONT33(JE
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C THIS FUNCTON IS FOR RECEZSIRUCflN OF.±I~ I-WICSMPD
C CAMaATM:
C (1/C (R**2) %fl*M**2-3*2**) ) )* C 2tWl*CX)S (%a/SDF (3) ) *CDS (RAJ2)
C -2*Wl*DS (2*Rtl/SDRC3))
C -2*SOIC (3) *W2*SIN R*Wl/DI (3)) )*SIN (RW))

C THIS REQUIRES THE SUPIORT OF FUNC.RJNK2.RUNC3.ELIM

C R:O10NSrANT
C W:OMHLX CaW.I)

R nCrIDN CrNM~ (RW)
COMPLEX W
DIMENSMDN AB(3,4)
MILER-1 -
I-wREAL (W)

W2 -AI1(W)

DlaCki-C*W2) *R
D2=(ktI4COW2)*R

C THE REMSTLJCrN EUNCTIDN WILL BLOW UP WHEN 1)IGO OR
C 2)V**2=3*W2**2
C

IF (CABS(D1) .GE.MILER) .AND. CABS(D2) .GE.MLER)) GO MD 999
IF ((D1.FlD.0).OR.(D2.ED.0.)) Go M 888

C THERE IS CNE 14DPE PFCLE4 MIIRG IMPL2EZMTATIN:
C THE COMPUTER'S U? ETD'I PCLE1.
C THEREFORE FOR IDLER-i., THE FUNCTID? IS D1IERIOLATED
C WITH THREE FOIN'r MRTCIM )LYWMML.
C THE COEFFICIENTS OF THE FOL)NMINAL IS (C.LOLATED BY GAUSSIMZ
C ELIIMINATION. THIS PWRAI IS UJI4ISHED BY MR. BnG WANP&
C EIM(AB,3.4.3)
C

IF (CABS(D2)).LT.IDLER) GO MI 555 %
ABCl.2)-CCVaIU+'ILER) )/C

GO 'M 777
555 ABC.2)-((MILER)+CVa'R))/C

AB (3,2) -( (MILER) -id'R) /C
777 AB (1.4) mPUIC1CRI(M(AC1 2)) /R)

AB (3.4) -FUNCI1(RM. (AB (3,2)) /R)
MI 800 3=1,3

AB(J,3) -1.0
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Mj,1)-(AB(J,2) **2.)
800 Q24TDI3E

aL L imCAB,3.4.3)

GD 1D 1000
888 03NT1-FJNC2 (RW2)

OD M 1000
999 aS 1zF NCI(R,~8.w2)
1000 REMM~'

ED
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C EUNCrIMt: JUNCI

C fHIS IS 7EIE REOSIUCrMN RJNCr1N WHN MIE DENHINAMR IS

PINNC1 PVC(R. k2)
C-BSD(3.)
Dl-(Va-COW2) 'R
D2-(VaflCW2) 'R
Xl-(COS (R*Wl/C) ) * (cflS (R~i2))

X3- (W*R2) *(SIW(R*J1/C) ) * (SIN(R*-.2))
RUNC1-2. (x1+x2+x3) /(Dl*D2)

ED
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C IUNCrMNt: FUNC

C llis is THE REatNsmuIcrLR affiCr=D MMD Wl**2 - 3*W2**2 -0

PUNCTMN FUNC2 (R, W2)

I r C2ud1./3.)*(sIntRIW2))**2.

ED
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C
C FUNCrIOt4: FUNC3

C THIS FUNCION WILL PROCC THE LINEAR ITERKLATION )RITDN
C OF THE REa 1SRUC1rIMt WUN=MN
C WHEN THE UNDEFlLOW PROLEM OCCURS

FUNCT=N FUNc(A,D,C,W2)

X2wB*W2
EUNC3-Xl+XZ+C

ED
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c FlNC'IN: CN

C
C THIS RIh4CMN I i REaZ461RCr RECr1A1.LUAR SANPLDG
C
C NL4JT1'fl:
C (SIN (.5* CVI.W))) *(SfI(.5* CV2.W))/(.25*(VI.W)*(V2.W))
C
C THIS RJNMflN REOUM ME S3POR OF SINC
C

EUNCTIDN Ut46w12 (Vi .V2 .W
OflMLEX Vi .V2 .W
XIRA VI RA +AIW WDi*AIUG (W
X2-REAL MV) *EAL (W) +AIWG M'1) *A]IU.G (W
Ot4ST2-SInC(X1l/2.) *SDnC (X2/2.)

END
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C
C SUBROUTIN: RIP
C
C TlHIS SUBIOJTINE WILL DO RECrANGULAR PLOT
C FOR REAL AND IWGflMY HIYr OR MAGNI'IUE AND PHASE PLOT.
c
C DAITA COMPLEX ARRAY 'ID BE PLD1TED(SIZE)36O)
C LAST :LAST ELEMET IN THEE ARRAY
C FMIN :SMLLEST VALUE ON THlE ABSCISS3R
C FINOR :INCREMET ON THE ABSCISS
C

SBRUTINE RPLOT (DATA, LAST, ENOl. FINQU
CHARACTR CDM
COMPLEX DATA(360)
DIMENSION )MXI(201) ,)7S2 (201) ,XAXIS(201)

5 WRIT(6.') 'M) YOU WANT REAL AND IMAGINEY PLOT?Y/N'
ACCEPT 6, COM

6 FORMAT (AD
IF (GDM.BD.'N') inl TO 15
IF ((XX.NE. 'Y') GO TO 5
DO 10 I-l.LAST

LaSI () -REAL (DATA (D)
YAXIS2 (I) =AIlW (DATA (D)
XAXaS(I)-(I-l)*FINaR + MIN

10 COTD(JE
GO MD 25

15 DO 20 I1.LAST
XAMS ) (1-1) *FINCR +RUN

IF(REAL (DATA (I)).ED.O0.) 00 TO 18
'OAXUS2 (I) -ATAN2 (AIMW (DATA (D) ) REAL(D&TAW())
GD TO 20

18 YAXS2 W m.
20 COTDUE
25 CallL.LH (XAXIS.YAXES1201.2011.0.1)

CALL ILTPIG(XAXISYAXS2.201.201.1.0.1)
RL1UW
END
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C
C OUBRTINE :ELI
C
C THIS SUBROUTINE IS COURTESY OF MR. BIlNG EWAN (16]
C

SUBRUTINE ELIMCAR, N.NP,MNIM4)
*" .DIMENSION AB (NDIM, NP)

C THIS SUBROUTINE SOLVES A SET OF LINEAR EQUATIONS.
C THE GAUSS ELIMINATION MET 1OD IS USED, WITH PARTIAL PIVOTING.
C MULTIPLE RIGHT HAND SIDES ARE PERMITED, THEY SHOULD BE SJPPLIED
C AS OLLMNS THAT AXMENT THE CDEFFICIN MRIX.
C PARAMEES ARE:
C AB CDEFFICIE24T MATRIX AUGMENTED WITH R.H.S. VECIORS.
C N NO. OF EQUATIONS
C NP TAL D. OF CDLLNS IN AB
C NDIM NO. OF ROWS IN AB
C
C BEGINS THE REJCTION

'- 1.41,N-1~DO 35 I-l,*NH

C FIND THE HOW NUMBER OF THE PIVOT 1OW. WE WILL THEN
C INTRCHANGE OIS TO THE PIv)T ELEET ON THE DIAGNAL.

IPVT=I
IP=I+1
DO 10 J-IP1,NIF (ABS (AB (IPVT, I) ).LT.ABS {AS(J, I}))) IPTi

10 C ENTUE
C CHEC( M BE SURE THE PIVOT ELEMENT IS NDT MO SLL, IF SO
C PRINT A MESSAGE AND REl=.

IF(ABS(AB(IPVT,I)).LT.l.E-5) GO MD 99
C lO ITERCHANGE , EXCEPT IF THE PIVOT ELE4 V IS ALREADY ON
C THE DIAGONAL, D NOT NEED 'I.

IF(IPVT.M.I) GD D 25
DO 20 J3IL-1,NP

SAVE'AB (I,JODL)
1 AB (I, JWDL) -AB IPVT, JDL)

AB(IPWT, J(L) -GAVE
20 CONTINUE
C NOW REDUCE ALL ENEM BELOW THE DIAONAL IN TE I-THM ROW.
C CHEC( FIRST D SEE IF ZERO ALREADY PRESENT. IF SO
C CAN SKIP REJCTION FOR THAT ROW.
25 r 32 J10WIP1,N

IF(AB(JROW,I).80.0.0) 00 WD 32
RATM-AB (JRVA, 1)/AB (1, 1)
DD 30 XCOL-IPl,NP

AB (J ,0ROW, L) -AR(J101,L) -RATO *AB (I, lODL)
30 CONTINUE
32 CONTINUE
35 CONTINUE
C WE STILL NEED M CHE A(N,N) FOR SIZE.

IP(ABS(AB(NN)).LT.l.E-5) CD M0 99

165

r.



C NOW WE BACK SJB6~TrITE.
NP1-N+l
Mn 50 KODL=NP1 ,NP

D 45 J=2,N
NB=NP-J]
L-NVNBj+1
VALUE-AB (NVBL, NL)
MD 40 K=L, N

VALLUh)=VALUE-AB (WVL,K) *AB (K,NML)
40 QONTIIIE

AB (NVBL, NML) =VALUE/AB (M1NL, WBL)
45 cflNTIME
50 'flNTUUE

C MESSAGE FOR A NEAR SD4ULPR MATR~IX.
99 WRITE (66,100)
100 FORMNT (I,'aLUrN NIJT ECSSIBE. A NEAR 0 PIVOT ENOUMURED. '

END
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&

r

CC THIS SUBROUTINE WILL WRITE A OMMPLEX 'DATA' ARRAY OF SIZE

C 'MSIZE' DD A FILE 'ENAMEl'. THE NUMBER OF NN ZERO
C ELEMNT IS SPECIFIED BY 'NJM'.
C

SUBROUTINE WFILE (DATA, MSIZ E, NUM)
COMP.EX DATA(MSIZE)
CHAJRCR*10 FNAMEl
CHARACTER WRI

10 WRITE (6,*) 'IM YOU WANT D WRITE IPID A FILE?Y/N'
ACCEPT 9010, WRI
IF (WRI.BD.'N') GO M 9999

* IF (WRI.NE.'Y') Q) MI 10
WRITE(6,*) 'SIDR E FILE NAME:'
ACEPT 9020,NAME1
OPEN (UNT8,Nvc=FNAME,TYPE-'NEW')
I 30 I1I,NUM

WRITE (8,*) DATA(I)
30 00NTINUE

- EE (UNrT=8,DISP ' SAVE')
- '.9010 FORMAT AI)

9020 ORI'kT (Al0)
9999 RETURN

S

lo-:
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W. I P.

C
C PROGRAM : INTEGFFT
C
C THIS PROGRAM WILL READ FROM A COMPLEX DATA FILE:INAMEl(MSIZE)
C WHICH IS PART OF AN INTERGRAND FOR INXT3RATIDN.
C THE DATA ARGUENT HAS A RANGE OF (0,360).
C (I.E. MSIZE IS USUALLY A MULTIPLE OF 360 <680)
C FOR 8192>MSIZE>512 CHANGE MNPI AND THE ARRAY SIZE OF: DATAI.DATA2.S
C THE OTHER PART OF THE INTEGRAND IS SPECIFED IN
C FUNd. THE INTEGRATION IS LIKE A CONVOLUTIDN.
C THEREFORE, THE INTEGRATIDN IS USING Flt APPROACH

_ C
C A RECTANGJULAR TO PLAR WDORDINATE FILE MUST BE SUPPLIED
C THIS IS FOR THE TIM PLOT WHICH IS ENAME3.
C THIS FILE IS GENERATED BY PROGRAM:RECTFOLAR
C FNAME3 FORMAT:
C NUMBER OF POINT: (*)
C RADIUS.ANGLE (RADIAN),X-(I)ORDINATE, Y-CERDINATE (4E15-8)
C
C THE ONLY PART THAT IS RELATED 70 THE MENSA'S ACI"UAL INTIRATIDN IS
C SHOWN AT A LATER SET OF COMIENT BEFORE TEMPI IS CALCJLATED
C
C LINK INTEGFETAPIRI, EXPAND, PICK, 'SSP
C

OCMPEX DATA1 (512) ,DATA2(512) ,FACIDR,.OLAR(l0000) ,RECT (10000) ,XJFY
DIMENSION S(128)
CHARACTER*I0 FNAMEl.EFNAME2,FNAIE3
CHARACTER NE,OD
M=9
NPl=512
NI,=129
NPOLAR=l0000
PI-3.14159265

C
C X2DR IS USED TD NORMLIZE THE AMP OF THE OlJTP3T

XNDR-IE-9
C
C THIS TIME FACIOR IS EACH UNIT OF THE TIME POT
C

TIMEIl/(0.49212598E9*31.)
WRITE(6,*) 'FILE NAME OF MEASURED DATA:'
ACCEPT 9000,FNAME1
WRTrE(6,*) 'FREQUENCY USED: (Z)'
ACCEPT*, FR.
WRITE(6.*) 'NUBER OF POINTS IN THE FILE:'
AEP*.MSIZE

C
C IF THE NUMBER OF POIN7 IN THE FILE IS LESS TRAN NH,
C THEN THE DATA MAY BE ONE QUADRANT DATA ONLY
C

A
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IF(MSIZE.Gr.NP1) GO MI 998
IF (MSIZE.Gr.NIIL) GO MI 110

120 WRITE(6,*) 'IS THIS (INE QU~ARAN DATA?Y/N'
ACCEPr 9020,CNqE
IF (ONE. EQ. lN-) 00 MI 110
IF (ONE.NE.'Y') 00 'I 120

130 WPXE(6,*) CMIW( CotLATE N 2ND AN~D 3RD QUARAN'15?Y/N'
ACCEPT 9020 .OMI
IF ((OMI.NE.'Y').Az4D.(OMI.NE.'N')) 00 MI 130

C MI GUARD AGAINST IOSSIBLITY OF MEASURMET IN~ OTHER~ EDR4AT

110 WRITE(6,*) 'FORMAT OF DATA: M)EAL AND IMAINA4RY
WRITE (6.* 2) AMP(LINEAR) AND PHASEC(RADIAN)'
WRITE (6,* 3) AMP(LINEA) AND PHASE MDEXREE)'
WRITEC6.*) '4)AMP(rB) AND PHASE(RADLAN)'
MITE (6' 5)AMP We) AND PHASE (DKRSE)

IF((NFORl.r.5).OR.(NFRz.LT.1)) (Go 'I 110
WRITE (6,'*) 'SMRAGE FILE NAE:'
ACCPT 9000.FNANE2
WRMT(6,*) 'NAE OF THE RECTANGULAR M 1VLAR FILE:'
ACCEP 9000,ENAME3

C INITIALIZATON

EATA(I)i(0.,0.)
10 ONImNUE

c RFADINWAMSMDT

lD 60 I1I.MSIZE
READ(8,9030) UJMWI
CALL AFIDRI (DJ!MY, NFOR1)
DATAI (1) -LUJ9M

60 CONTINUE
~CCE (UNIT8,DISF.' SAVE')

C EXPAND MI FILL THE HALF OF THE SPAN~ OF THE FFT REPETITIVE UNIT
C

IF (MsIZE. LE. NPL)CALL EXPAND (DATAl .DATA2 .NP1 .MSIZE,N )
IF (NSIZE. CT1. NFL) CALL EXPAND (DATAl.r)ATA2 .NP1 .IEIZE, NP1)
IF (MsIZE.ar.NPL) GO MI 170

C
C CASE OF FULL MAE DATA INPUT
C

IF (ONE.ED. 'N) CAL EXP'AND (nATAl ,DATA2 .NP1 ,NL~,NP1)
IF CONE.E.WN) CO MI 170
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C FlyLL IN flHE Oflil HALF OF THE SPAiN BY COMPLEX MULtEATE OR
C THE SAME

MSIZE=NPL
DO 160 I=ld4SIZE-2

IF (OM.E). 'NI)DATAl (I+MSIZE) =DATA1 (MSIZE-I)
IF(OJL. a. 'Y') DATMI(I+M4SIZE)- JG (DATAl (MSIZE-I))

160 COTINUE
MSIZE~m2*14SIZE-2
DO 165 I=1,M4SIZE

IF(Oa).E).'N') DATA1(I+MSIZE)-DATAl(I)
IF (OU.BD.'Y') DATA1(+ISIZE)t4JG(DATA1(M)

165 ONTINUJE
MSIZE=NMSIZE*2
IF04SIZE.Gr.NP1) GD MI 998

170 MSIZD--NPl
C
C DELTA :SIZE OF EACH ANG3LE INGCRBIENT

DELTA'2 - PI/NSIZE
OPEN (UNIT-8 ,NAME=FlNAME3 ,TYPE='OLD')
READ(8,*) NiOINT
IF (N IN'r.r.NP)LAR) GD MD 998

C READ THE RECTA1IULAR TO POLAR COORDINATE 0rI4ERSMN FILE

DO 100 I-1,NPOINT

READ(8,9005) PLARI)ECXT(I)
100 COTINUE

aCSE (UNIT-8,DISP-'SAVE')
CALL FC)Rra)A=.1,M,S.1 .IFWR)

C THE VALUE OF AMP1 -1 IS QI..Y A DUMMY TO START THE ROUJTINE
c

AMP1-1. -

Do 200 J-1.NPOINT
WRITE(6.*) 'WORKING CN:'.J,' LAST OE: '.NFINTl
IF (REAL(POLAR (J)) .a.AM~1) GO MD 50
AMP1IPOLAR (3)
DO 17 I-1,NP1

DATA2(I-(0.0.)
17 COTINUE

DO 20 I=1,MSIZE
THE h(I-1) *DETA
wHIu2. *PI *(REAL (POLAR( Q ) *TNE*'P*DS (THETA)

C FUNC1: EX(JWT)
C THER~EFORE, )UREAL-ODS (PII)
C 'I!9G-Sfl4(PHI)-

XUREAL-ODS (PHI)

170
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DATA2 QI) =4A.X OOC.EAL, YII.UG)
20 TIWJME

C GO MD FREUlCY IDI@Mfl

alIL PR~rI!DATA2.m, S. 2. IFER)

C OXWOVLUTION IN4 TIM <-> MULTIPLICALTION IN FREN~CY

MD 25 Iinl.Np1

25 COTINUE DT2W-TI()*A I

C Go BACK( m T~lE IDANIN

CALL FORT DATA2.M,S-2.IERR)

C NOW FOLM (3) IS WlE D4TmRPL VALUE OF 2D EURI mANspo4
C WITHl IMPULSIVE RADIUS VALUE (MNSA' S DITMRAL)

50 ANLD"AIAG (OLARQ))
POLAR(Q) -PI CK(DATA2Np.O DIm, A~LE)

200 ON~nE PLAR (W - (PLAR (J) /FLOAT (MS IZ E) ) *FPEI*)MR

C WRITE OUT MiE FILE
C MIE EVRl9AT:
C NFOINT:NMI6R OF PINTE (110)
C REAL. IMAGINAR,x-000RDNT,y-oRDINATIE (4E15 .8)

OPEN (UNINw9,NME-Fl4AME2.T~pE-' NEW)
WRITE (9,9010) NronT

SD 300 iiNor
WRITE (9.9005) POLAR (I) ,R~cT(1)

300 CONTIR3E
CLOE (UNI-9,DISP SAVE')

r-. GO M 999
998 WRITE(6,*) 'ERROR: SIZE OF FILE MO LARGEI'

C FORMt STATET

* 9000 FORl9WTA10)
9005 EORIMkTC4E15.8)
9010 EOR9LT (10)
9020 EORMKT (Al)
9030 EORMATC2E15. 8)

999 UIDP
END
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C SUBROUTIE: EXP'AND
C
C THIS SUBRUTINE WILL EXAND AN ARRAY DATA (MSIZE) ONTAINING NFILL'
C DATA UJEhIDJYM In'I 'NEXP DATA ELEMENT USING LINEAR D4ThR10LMTIN
C 2<NFULL'24W
C
C WORK: A DUMMSY ARRAY FOR 'IDAIORARY STORAGE
C

SJBIOJTINE EPAN4D (DATA, WORK, MSIZE, NILL,IEW)
WNH.FDC DAT~AGIS1ZE) ,ICRK (NSIZE) ,DIET
ERROR4IE-6

DELTA2-I ./FLOAT (NEXP-1)
D 10 I-1.NFILL

10 CONTINhUE
rATA (1) -WRK (1)
DATA OIEfl') 4MR (NF=LL
ID 20 I1.NEXP-2

X- (I) 'DELTA2
No INT (X/DELTA1) +1
RUIAIN=-MVD (X, DfLTA1) a
R)AT3D (X-DELTAl*FWCAT (N-1)) ADELTA1
DIFF-(CRK (N-i) -WORK (N) ) *RAaam
DATA (1+1) 4CORKC(N) 401FF

20 CONTIUE
RETURN1
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C COMEX FUNCTION: PICK
C
C THIS FUNCI)N WILL RETURN A LINEAR IR FOLATED COMPLEX
C VALUE BAC.
C DATA: ARRAY
C MSIZE: SIZE OF THE ARRAY
C FIRST: FIRST/DELTA IS WE FIRST DEX

$ C DELTA: INCREMENT OF EACH STEP IN THE ARRAY
C VALUE: VALUE/DELTA IS TIE LOCATIDN IN TiE ARRAY
C N :EXACT LCATIDN CR LOCRTIDN -1
C VARY :AMDUNT OF ANGLE DIFFEREN(
C FACIDR :AD3USTIKN!2T TO DATA2(N)
C

COMPEX EUNCTIN PICK (DATA, MSIZE, F'ST,DE.,,VALUE)
COMPEX DATA (MSIZE) ,FACIOR
IF ((VALUE.LT.FIRST) .OR. (VALUE.GT. (MSIZE*DELTAi +FIRST))) GD TD 998
N"INT((VALUE-FIRST)/DELTA) +1
VARY- (VALUE)-((N-I)*DELTA+FIRST)
FACDR- ((ATA (N) -DATA(N) )/DELM) *VARY
PICKOCRTA (N) +EACIDR
GO 'I 999

. 998 WRITE(6,*) 'ERROR:INE1OLATED POINT IS O.UIDE 7HE RANGEI'
999 RETURN

END

i~17
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7.4

C SJBKCUTIE: AFIDRI
C
C M~IS SUBICUTLNE WILL OtXERT ANPLTIUDE AND PHASE (VALUE) In'I
C REAL AND IMAGINARY (VALUE).
C BY SPEaEYING N
C N1 :VALUE IS ALREADY IN REAL AND IIW.INARY FRM'I-
C N=2:AMPLr1UMf (INEAR) HASE (RADIAN)
C N3:AIHJMIUE (LIKEAR) HASE (DWPME)
C Nw4:AMPHI!Ur (DB) PHfASE (RADIAN)
C Nn5 :AMH.,rlDE (DB) PHIASE a=FREE)

SUBRUTINE AFIDRI (VALUE, N)
ODMPLEC VALUE
IF (NED).1) 00 mI 999
P1=3.14159265
AMP-REALM(ALUE)
PHASE-AI@SG (VALUE)
IF ((N.HM.C.OR.M(.ED.5)) AMP-1O.O**(A /2O.)
IF C(N.EO.3) .OR. (N.E2.5)) PHASEffiASE*PI/180.
VALU~~Q1PL CAP*ODS (PHASE) ,AMP*SIN (PHASE))

999 RE'IUR
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C ~PGAN : RE~rFLAR
CrC THIIS PM WILL CHANGE RECIWGLAR CORDINATES WD
C POLAR COORDINATESI. THE FILE R4NAME' W IVUIS IN TOE
C OLEDW12G FORMT:
C RADIUS, HI(RDIA4) XvY (6E15.8)
C THE FILE WILL AlS) BE ORGANIZ~lD FROM SNRLLEST RADIUS

V.C TOD THE LARGEST RADIUS.
C NOTE! THE MMIJM X OOORDINATE VALUE, 'PX' WILL GIVE
C (1Ap.J*2)**2 +2*2*YAX +1 DATA POINTS
C TEREFORE A GRID OF 256X256 CAN ACCODATE MKX-127
C
c LDU RECrIOLPIR,EN SEARaI1 * IE1 * IVSHI .RMJL
C

COMEX~ DATA(65536 .2)
CARJACTER*1O FNAZ'
WRITE(6.*) 'FILE NAME FOR S'IDRPGE OF RESULTS:
ACE~ 5.FNAME

5 EORMRT(A10)
WRrTE (6,*) I'MEJM X OOORDINM'E VALUES:

14SIZE-65536
P1-3.14159265

DATA (4,1 uQIH.X(0.4,.)
DATA (K,2) -CKH.X (0. 0.)

C
C THIS W LOOP GENE!RATS ALL THE AXIS PIDWT
C

DI 10 JL1MRX

DATA (1,1) 001PLX (Xl .0.)
DATA(,2) .OILX0L1.0.)

DATA(1, 1) -a4HacX c1. PI/2)
p DATh K, 2) -i3LX(0., ,X)

DATA (M4,1 D1M..uoaa pI
DATIA 06,2) UOI4PLX (-XI .0.)

DATA(N, 1) ouPE L1. .*PI/2.)
DATA 04,2) 'OIH(.,-X1)

10 CONTIUE
WRITE(6.*) CAMMATING FIS QUADRANT PDIN'ISV
ChLL GEN(MAX,DATANSIZE,M,1,)
WRTE(6, *) 'CALCULATING SEChND QUKAM'rn vDII
CALL GEN(MAXDAlTASIZE,M,-1.1)
WR1IE(6.*) 'cmcuaim&f THIRD QUAR IQInmi
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CAU GEN (MAX,DATAMSIZE,M,-lD1)
WRITE (6 ,*) 'C@LCJ1ATM EOUMf QUAEPRW RFOIV
CALL GEN (MhX, DATA MSIZ E, M, 1,-D
OPEN (UNIT-8,NAE-FNAME, 'IWE-' NEq)
mm T(8,*) m
Do 20 I1.M

WRM''(8,1000) DT(,),AAI2
20 CON~T72UE
1000 FflR19T(MIS -8)

END

176



C SIDMTOflME: GENI

C 1THIS SUBXCUTINE WILL GENMTEI OFF APJU KIRM
C FOR V1-(1,0) .V2=(0.1)
C THfIS IS A MDDIFIED VERSION OF Oflhl IN PTCRm

C MAX muaniWM Imcx
C DI'ILE :COMPLEXC ARRAY FOR SlT)PLE
C NS1ZE :DIMESMN2 OF MFILE
C m :1VIER OF ELEMEN~T
C lhlSIGN :SIGN OFN1 (Da*Vi)
C N2SIGN :SIGN OF N2 (N2*V2)

C THIIS RQUR THIE SUp~ OF SEPRCI.INERTI,NDRIL

SLB1UJThIE GEN4 (MAX, DFILE, MSIZEM, NO.SIGN NSIGN)
EXNAL SEARHI1
COMO= DFILE (MSIZE. 2) .VEClORVI.V2
REAL MA

DO 5 1-1.Hhx
WRITE (6, *) I
Do 10 J-1.MAX

VEC7DRm-J*V2 ~N1siGN #l'V2*2SGN
IW-CAB(EMxOR)
PHASE-ATAN2 MAIW(VOR) ,REAL (VECIOR))
CALL NDRMhL (PHASE)
vBcIOR-OIPLX (MAG, RASE)
EDC-SEAR~fl (VECURDFILE,I4SIZE.K)
RJuFlDAT WJ
RIFOUiT(I)
IF ((NSIGN. LT.O0) -AN. WNSIGN. LT.O0))

1 CALL INS~r1 (LC,M,DF'IL,NSIZE,VBCIR-a,-RI)
IF ((WSIGN.LT.0) .ND. (N2SIGN.Gr.0))

2 Call INSERT (LOC, M,DFI.LE.MIrZEVECIML-R.RI)
IF ((?(LSIGN.GT.0) .AND. OwsiGNLTo))

3 CALL INERT1 (LfC,MDFILE,IEIZE,VEcXRRI,-I)
IF ((NISIGN.GT.0) .AND. (lVSIGN.OT.0))

4 CALL nL4cfl(WOC,MIPDFILE, IZE,VEcIR,R:J,RI)
__10 03NTINUE

5 COWMUhE

END
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C
C FUNCTION: SEARCH1
C
C THIS FUNCTION WILL SARCH TE LOCATIDN WHE RE THE ELEMET
C FITS II2M A DATA ARRAY. THE ARRAY ASSUMES AT LEAST TWO-'
C MEMBRS. THE E.EMENUT MAY HAVE 3 POSSIBILTIES:-
C 1) THE REAL PA.RT IS GRETE THRAN THE RE'TURNED LOCALTION
C 2) THE REAL PART ISh IE SAME
C BUT THE IMAINARY PART >RETURNED WiXTDN VALUES

- C 3) IE REAL AND IMAtGINARY PART ARE THE SAME
C AS 7IE RJETURNED LOCATION VALUES
C
C ELEMENT :COMEX ELEMENT TD BE INSERTED
C DFILE :WODMPEX ARRAY TD BE SEARCHED
C MSIZE :SIZE OF DFILE
C LAST :NUMBER OF NWN-ZERO ELEENT IN DFILE
C

FUNCTION SEAR(i (ELEM 2'T,DFILE, lIZE, LAST)
CDMPLEX DFILE (lSIZE,2) ,ELEENT
LOC2=LAST

IF (REAL(ELOOM).LT.REAL(DFILE(Ifl!,1))) GO TD 147
IF (REAL (ELEMNT) .GT. REAL (DFILE (=,l))) GO TD 140
IF ((REAL (ELEHNT) .E.REAL(DFILE(IfC,1}}) .AND.

I (AIMAG(ELEENT).LT.AII9,(DFILE(LDC,I)))) GO 'D 147
IF ((REAL(ELEKNT).EQ.REAL(DFILE(ILOCI))).AND.

1 (AIAG (MOM).GT.AIMG(DFILE(LO2.1)))) GO 'TD 140
120 LOCI - (1C= +I=2)/2

IF(LOOR.EJD.WLC) GO ID 150
IF (REAL(ELEENT).LT.REAL(DFILE(iX0,1))) GO TO 125
IF (REAL(ELEIENT) .GT.REAL(DFILE(IL)M,I))) GO MI 130
IF (AIlG(ELE NET).LT.ALMIG(DFILE(IOX,1))) GO TD 125
IF (AIMG(ELENT).GT.AI@ (DFILE(WQ,1))) GO TD 130
GO TO 145

125 IW2 -LX!
GO 'O 120

130 ILO-IOIM
GO TO 120

140 SEARHIl - I=~
GO 'I 155

145 SEAR oI = LOM
GO ID 155

147 SEARCHI - LOC1-1
GD TOD 155

150 SEARCH - LDCi
155 RETURN

END
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rc

V. SUBROUTINE: IS~

C THIS SUBROUTINE WILL INE~ THE ELEMENT DID THE DFILE
C IF THE EUDU4 HAS A DIFFERENT REAL AND/OR I?9%GINARY PAMT.
C THE REAL PMR HAIS A SE24SrrrVrrY sREaFIE By THE mad.
C THE IMINARY PART HAS A SENSITIVITY spEaFIED By ERUoR2.
C THE PRIORITY IS REAL FRRT FIRST VENl IMAG~INARY PART.

C NSTART :LOOMTIN OF THE ELEMENT
C LAST :NUMBEFR OF NON-ZR ELEMEN7 IN DFILE
C DFILE :ARRAY FILE ID BE INSEIED
C NSIZE :SIZE OF DFILE
C ELEENT :CD*PLEC ELEMENT TO BE INSERrED
C V1INDEX :!NMBER OF Vi USED
C V2IDEX :NUMBER OF V2 USED

SUBROUTINE INST1 (NSTART, LAST,DFILE,SIzE,ELTVInrE,V2NE)
COMPULEX( DFILE CSIZE, 2) ,ELEMENT
pz=3.14159265

IF (NSTRT. NE. LAST) OD MD 200

C CASE OF NSrART-LAST
C
C IF (ABS (REAL (EMDENT) -REAL (DFILE (IASTMf). OGT. ERR) D GO 7 190

IF (REAL (ELEKENT).GT. REAL (DFILE (LAST,1D)) (GO TO 190
IF CABS (AIG (ELEM24T) -AIAG (DFILE AST,1))LT. NMOW) OD WD 295

190 LAST -LAST +1
DFILE (LAST, 1) -EzDEDEr
DFIL (LAST, 2) -OUUPCLXM VVA2 IN=X
(3) M 295

200 IF (NSTART.E0.0) GO ID 202
C IF (ABS(REALELiEN)-REAL(DFILE(NrART1))) .GT.ERRN~1) GO MD 202

IF (REAL (ELE T).Gr. REAL(DWILE (NSrAT,1)M) CD M 202
IF (ABS(AII (ELE T)-AIMA(DILE(NSrART,1))).LT.EIR2M) GO TO 295

202 CAL PUS(NTARTd1.LAST,DFZLEMSIZE)
DFILE (NSTARTII .1) ELEN2T
DFILE (NSPART+1 .2) O4HLX (ViInrEX.V2DC

295 RETUN
EDD
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4C PRORAM: SUM31)

C TIS PROGRA CAN D THE R)LLCOflG:
C 1) READ A DATA FILE
C 2) SMING1 OF DATA FILES
C 3) PLOT A DATA FILE 11N A) 3-D PICTURE PLOT
C B) CONTOUR PLOT
C 4) 2-D FOURIER~ TRANSFORM4
C 5) MODIFIES F1RFDUENCY DATA BY A) 113W
C B) -I/W**2
C 6) COS IE TAERING Low PASS 7HE n~iuE~cy DATA
C 7) HIGH ASS THE F~EUECY DATA
C 8) WRITE OUT 'THE FILE
C
C THE INPUT (OR OUTPUT) FILE FRMIAT:
C NFOINT:NUMER OF POINTS I 'THE FILEC(IlO0)
C DATA, X-02)ORDINAaE,Y-X)RDINATE (4E15 .8)
C
C THE CtW1DUR PLOT LINKS WITH NAR ~R~rnM PAC~KGES
C THE LIKING REQUIRED IS:
C $CASSIGN OW2: 1NCAR2 .NCARPL~tO. 0LTh]B N~p.pLTLB
C $ASSIGN ERA2: [I~R2.NCRRLIB] NCARJ.LTh
C $ASSIGN UA2: [NCR2-NARPL0T] NaRP14
C $ASSIGN UWA2 INcAR -NcOPAO'r. CHROME] NCAR-P.HTQlME
C $ASSIGN IRA2: tNCXR2NCRFLOr.TEST] NCARPLOX-TEST
C $ASSIGN =-2 CNOW.NPOT.Doc NCW-P OTw mc
C $ASSIGN UMA2: [NC R2.NcARPLT.7RMS] NC@RPLT-hANS
C SLwI Ssum3D,DPqr, 7RAN2D, WEIGHT, RMO3D, AFDRI, 'SSP,' HfUIIB, -
C W.A2: [NCAR2 .NCARPfLT. PLn'M] NCARcDNRE/LIB, NCARDSHC/LIB,-
C NCARGRAPP/LIB, NCIlCRAPH/LIB, I NCAR2 .NCARLIB] LUILITY/LIB
C

O02HPLEX( DATA (31,31) ,DMM, AIORI,CJi
DIMEN-SION ARRAY(31,31) ,ARRAY2(31.31) ,ARRAYP(31,31)
C0ARCIE*10 FNAME.IE.NAM2
CHARACTER ArVOME)A, SPACE, LP, HP

MSIZE=2**?fl-1
PIm,3.14159265
CJ=0'IPLX (0.1)
K=MSIZE/2+1

C INITIALIZATION
C

DO) 5 I11SIZE
D 6 J-1,MSIZE

DATA(I,J)(0.,0-)
6 CONTINUE
5 CONTIUE
a WRIE(6,*) 'DATA FILE NAME:'

ACCEPT 9000,FIAMEl
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II-

t110 WRfl'E(6.*) 'WHIAT IS 'DiE DATA PORMiAT: 1) REAL AND IMAG'

WRITE(6,*) '2) AMP (LINER) AND PHASE (RADIAN)'
WRTE (6,*' 3) AP LIEAR) AND PHASE (DEGREE)'
W~RITE (6,* 4) AMP (M) AND PHASE (RADIAN)'
WRITE (6,* 5) ANP(rO) AND PHASE (DEGREE)'

IF ((NWM.GT.5) .OR. (IaI*I.LT.1)) 90 MD 110
C
C READ IN TOEDATA
C

OPEN(UNIT=10 .NIE=FN'AME1 .TYPE= 'OLD)')
READ(10,9010) NPIIT
D 10 I-1.NPOINT

READ(10,9020) DUMMW,X1.Y1
CALL APIDRI (DUMM~Y, NCDM)
M-INTOC(XD 4K

DATA(M,N)= DATA(M,W) +DUMM4Y
10 TfTIME

CWE (UNIT-10 ,DISP- 1 SAVE')

C PLOT
C

CALL IWT DATAMSIZE,ARRAY1 .ARRAY2.ARRAYP)
C
C AME ANOTHER FILEU C
20 WRIrE(6,*' AMD AND'fHER FILE? YIN'

AXE1! 9030, AME
IF (AM. ED.'IV) OD M 8
IF (AI.NE.'N) Go MD 20

C
C WRITE DI= A FILE
CU 25 WRITE (6,'' WRITE MUR DATA InMI A FILE? YIN'

ACEPT 903 OFKEEP
IF (KEEP.E).'N') GOID 30
IF (KEEP.NE.'Y') 00 MD 25

WRITE (6, *) 'FILE NAM:E:I
ACCEP 9000 ,FAME2
OPEN (UN nr8,NAM=FNAME2 .TYPE-'NE~')
WRTE(8,9010) MSIZEW*2
D 27 I-1,MSIZE

WRITE(8,9020), (DATA (I, J) i FUoT (I-K) , F%=A(J-K) J3-1 MSIZE)
27 COTIUE

CELE (UNrr-8,DISP. 'SAVE')
C
C EDURE MANSFORM

30 WRITE (6,*) ' GO ID FREUECY IDNAIN? Y/N'
ACPT 9030,OMN)A
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IF (OKOGA. ED.'N') GO M 50
IF (OMEGA. NE. 'Y') GO) MI 3 0
CALL TRAN2D (DATA, MSIZE,-1)
CALL rLUT(DATA,MSIZ EARAY1 .ARRAY2 .ARRAYP)
GO MD25

C
C INVERSE FOURE TRANSEOF44
C
50 WRZTE(6.) Go M I TIME InkW.N YIN'

ACEPT 9030,TIME
IF (TIMEtQ.'N') cJ0 MI 60
IF (TIME.NE. 'Y') GO M 50

C
C MODIFY MI PREARE FOR STEP OR JRAMP RIEPNSE
C
120 WRITE(6,*) Wi 1T ID MDDIFY DATA? BY 1)11

WRITE (6,* 2)1/3W'
WRITE(6,* 1 3)-1/W**2 -

IF ((MED.Gr.3).OR. (MvD.LT.1)) (f0 MI 120
IF (MOD. ED. 1) Go ID 95
IF (MOD.ED.3) Go MI 130

C
C 14DDIFY BY 1/3W
C

Mn 125 I=1,14SIZE
DO 127 J--I.MSIZE

W-2.*PI*sOFr(FLAOAT( (I-MSIZE/2-1)**2+(J-MSIZE/2-1)**2))
IF(W.NE.0.) DATA(I,J)DATA(I,J)/(CJ*W)
IF (W.0.0.j DATA(I,J)=(0.,0.)

127 ONTINUE
125 CONTINUE

GO MI 145
C
C MODIFY BY -1/W**27
C
130 DO 135 I=1,MSIZE

DO 140 3=1.MSIZE
W-2. *PI *SORT (FLOAT ( (I-MSIZ E/2-1) **2+ (j-NEIZ E/2-1) **2))
IF (W E. 0.) DATA(I, J) -DATA (I, J)/(W**2)

140 OONT2UE
135 CONTINUE
145 CALL EL'r(DATA, MSIZE,ARRAY1 ,ARAY2.ARRAYP)
C
C cosINE WAERIG LOW PASS
C THIS IS BY SPEYING3 THE NUMBER OF HA~RMONICS
C
95 WRITE (6. *) 'WVZI MI In COSINE LCW-PASSY/N'

ACCEP 9030.LP
IF (L. Q 'N') (30 MI 100
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IF (LP.NE.'Y) WD M1 95
WRTE(6, ) I'CUT-OFF ELDVM N1113:'

M~ 200 I-1.I4SIZE
Do 300 J-1.14SIZE

DftTA(IoJ) -ITA(IJ) *WEIGHT(N=J, I,JIzE)
V300 (ONTfINE

200 COTINUE
cALL rpWrcDTAi~sE,ARRY,ARRAY2.ARMP)

C HIGH amS FILM32G
C AAIN By spamim WE M14BER OF HARMONICS
C
100 WRITE (6,*) 'HIGH PASS FlLEflI7Y/No

ACEP 9030.HP
F. IM(P. EO.IN) OD'JD 400

IF(HPNE.'IV) OD M 100
WRiT(6.*) laproFF EummD~ NumERl:'

M 500 I-1.!EIZE
W 600 J-1,WIZE
RR-S (MR FL(I-4BIZE/2-1) ) **2 + (FL0AT(J-f6IZE/2-D)* 2)

600 OWTNUEIF (flERE.L.FL.OAT(NCUT)) DATh(I,J)-(0.,0.)

500 CW3TI1VE
CALLWr (DNATAf4IZEARMY1 .ARRAY2.ARRAYP)

C
C DD FOURIER 7RANSPOM4 NOW

- C
400 CAM LL (N)DATA, MSIZE, 1)

WRIE(6WM) WE Daik ARE IN 1'I1 IDmmN iI
CALL I0 CDATA,M4sIZE,PARAYI.ARRAY2,ARPAYP)
GD M0 25

9000 FORM10~ M)
9010 H2RpMT (I10)
9020 FOIMKT(4E15.8)
9030 RPIT(A1)
60 S'DP
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C
C UBROUTINE. WFLOT
C
C THfIS SUBROUTNE WILL PLOT 3-0 FOR A ODMRJEC ARPAY DATA
C EITHER IN A 3-0 PICTURE OR A OVIUR RAY?
C THlE GI']DUR PLOT LIMK WITH NCAR PLOTTING PAKAGNE
C
C DATh :2-0 OD14PLEX ARAY M BE ROTIID
C M4SIZE :SIZE OF DATA
C APMYl .ARRMY2 .ARPMYP:iuw ARRAYS WITH Sam DIW24sIDNs As DATA
C

SUBROUTINE MM ATA, ISIZ E, ARRAYl .ARRAY2.ARMAYP)
OY4PLE DATA 04SIZEMSIZE)

DIMENSION ARMAY1 (N4SIZE, MSIZE) ,ARRAY2 04SIZ E, MIZE) ,ARRAYP (MIZE 14IZE)
CHARACTER ACT, FED, ~~fMM, .WMMOM.(fl45. LIM4,PICK

10 WRTI(6,*) 'Mn YOU WANT 20 OTYIN'
ACEP 9030mflM
IF (ODK.BD.') GO M 9999
IF (CXDM.E.'Y') (3 MI 10

C
C I()RILIZE THE WHOLE DATAk FILE BY S014E FACIOR
c )

500 WRITE (6 -*) 'M YOU WANT TO D CRMI.ZE WITH A FACiUR?Y/N'
ACCEP 9030,00M
IF(WDMS.ED.'N') GO MI 510
IF(CD145.NE.'Y') GO MI 500
ACEP *, FACDR
0O MI 20

510 FACIDR.
20 WRTI'E(6.* ) ' RAY? REAL AND IMAGINARY? YIN'

ACCEP 9030, AC?
IF (ACT. MD. 'N') GO: M0 50
IF CAC. NE'f' I3) ID W20
DD 40 I-1,MSIZE

ED 30 J'1l1'SIZE
ARPAYl (I, J) -FACIDRPEAL (DAT(I,3))
ARPAY2 (I, J) -FACIVR*AIM (DATA (I,X)

30 OONTIME
40 COTINUE

GO 20 100
C
C Ot4VRSMON INTOD LINEAR AMLITUE AND PHASEM(ADIAN)
C
50 DO 70 14.IESIZE

Mn 60 J-1.IZE

IF M(EAL (DATA ,J)).ED. 0.) AND.
(ADM (DATA(I,J)).!D.0.)) O TOD 55

ARRMY2 (1,J) =AXAN2 (REAL (DATA (IJX) ,AIG(DATAC(1,J)))
aD TO 60
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55 AMRY2(I,J)u0.
60 OOlIThJE
70 ONTDIE

100 W~1TE(6.*) 11)3D PIcAJRE,2)O0NMUR ROCT'
ACP 9030,PICK
IF ((PICZ..1 2).AND.(PICLIU.'1l')) GO JD 100

101 WRITE(6. 'PLDT AM~ID/RlLYN
ACCEP 9030.aM4
IF(M.EW:N) GO V 150

IF (PIC. .1) GO MD 102

IF (PICK. E. '2') CAL Mzal(ARRAY116ZE.SIZE)

GO M 150
C
C PLT 3 DPICU)RE
C
102 CALL VRDIS(0.0.0)
120 WRITE(6,' 'PLOT X-LNE,Y-Lfl~rR BDM'?XY,B'

ACCEP 9030.LINE
IF ((LNL. 'X) .AND. (LE.iU. 'Yn) .AN. (LDALE. 'B')) GOV 120
CALL SULLIN 3D (LDIE)
CALL WLTATMN1 3D (0)
)DXI-iiARMhy1 (1.11)
bouN.ARRAY(1.1)
DO 300 I1-dUIZE

M 310 J1.NSZE
0XiX1 (ARRAI (I,3) =Wmx
xuINwpma(ARRAYl (I, J) ANIN)
ARRAP(I,J) -ARRAY (I, J)

310 OTU

WRXT(6,*) ' REdDh'SUE)SCAL:'..5/0aSRX-IU,')I
ACCEP *PSCUZ
WRM(6,*) 'WHIAT IS SM VMrI AMUL N.R..?. X-Y FLANE?'

ACCEP *.VUN
CALL RL.3n....AiRFE(ARRAYP, IEIZENESIZE.VIWbO-t. .. SCL)

4001 WRITE(6,' 'IS THIS THE LAST RO1'Th'N
AOCEr 9030, RD
IF (RLOdg.'Y').Ai. (WLO.NE.'N')) GO 'M 4001
IF (PLOA.W~ N) NSIGN-1
IF (PL.D.'Y') NS1Qm1
CALL ROTr(0.,0.,N5MP99)
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C
c Paar DWNARYw OR PHAS
C

*150 WRfl'E(6.*) 'SE~ ME iiASE/IMI~NAY?Y/NI
ACCP 9030,0010
IF (CD143.M.'N') OD ID 5000
IF CM.NE.'Yl) OD M 150

IF (PICKd. .I) GD w157

C

CALL MCM(ARMY2.)4SIZE,.ISIZE)
GO 2D 5000

C 3D PIC= ELA)T

157 CALL MROTS(0.0.0)
220 WpIT(6.*) IBM~ x-L=N,Y-DmEUoR BO'mIx.y,B'

ACCEP 9030.LINE
IF MINTEJI.'X').AN. Lfl4EJE.'Y').AND. (LINE.NE. IB')) GD !D 220
CALL SET.LINE 3D(LIE)
CALL SLR)ATION 3D (0)

C FIND THE MINI"I AND ?VMMJM IN WHE RfLOMI SE
C

XMUAXRRAY2(1 .2)
XMIN-ARRAY2 (1.1)
D 400 I-1.IEIZE

ID 410 J31l .JBIZE
)UIAX'-A"X(ARRAY2 (1,3J) I XW)
X041NN41NI (ARRMY2 (I, J) .XMIN
ARRAW(, J) -APMY2 (I, J)

410 CON4TINUE
400 CON4TINUE

WRITE (6.' 'SCRLE OF PHASE/IJPGINARY lUr:'
WRMT(6.*) '(MAX-.XMX~,' PMI.'.XKIN4
WRIE(,*) IRECDSMeIDSCLE: '.0.5/0=i-XMIN) *')'
iAzCEr '.SOKLE
WRIT(6') 'WHAT IS THE VEW AM W.L!'. IC-Y PLANE?'

ACCEr *,yWf
CALL ACTL3D SURFACE CMRAY,IZESIZE,V1W,.,0. ,SOE)

4000 WRIE(6.*) *'1 s MIS 7 LAST RDT7TNI
ACE~ 9030. PLO
If ((HPW..Y').). (PO.NE. IN')) GO M 4000
IF (HO4.BD.'N') NSIGN-1
IF (OE.B.'Y') ?UIGNo1
CAL L OT(0.,0.,N6IGN*999)

5000 WRrI'(6.') 'PLOT AMUMIYN'
ACEYr 9030. OW~
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IF (CON2.K.'Y') O M 100
IF (OXt42.E.'N') OD M 5000

9030 FORMT (AI)
9999 RETUM

am
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c 7ISSUBCUI NE IL 1OURIER MANMRM ON A CKLXM N2 .M

c 7HE RA SASSUMED TD HAVE THE ORIGIN AT THE CIrME OF THE PLOT.
C THE RAM HAS EQUAL IVIM5El OF tiNrIS ON EACH SIDE OF 7HE =H AXES.
C I.E. MIE SIZE OF THE ARRAY (MSIZE) IS AN OM NUMBER.
C WOWI IS THE WORKING ARRAY WnI SIZE 2**N ID JUST FIT THE DTA, ARMY.

C DA.TA :COKPLEC 2-D ARRAY WD BE IRANSKVNMED, AND RESULT SIORED
C M4SIZE :SIZE OF DATA,
C IFSEl! :+1.(D MD TIM
C :-1,G M~ FDREQUENCY

SUBIRJTINE TRAN2D CDATAMSIZE, IFSET)
ODMLpE( 1WK(32.32) ,DATOL(14SIZE,14LSIZE) 4-

DIMEN4SION S(8)

14SIZEI-32
I.(1)N5
MM (2) w5
M1(3) -0

C H..NE THE 4'RED PICIMR INIO THE IWR WORDS .

c
CO 10 I-1,14SIZEI

ID 5 Jm9.IEIZE1

5 C3W=IE
10 CONT33UIE

DD 20 I-i.N
ED 15 J-1.N

iWK1 (Ili) -T(N+I-1N-J-1)
15 CONTINUE
20 OOT33UE

DD 30 1-1,N-1
D 25 J-1,N-1

WMUU CSIZE-NfI+1 .IEIZE1-N+J+1) ETA(IP3)
25 CL14TINUE
30 CONITIUE

DD 40 1-1,N
D 35 1N1

35 CONTINU3E
40 CO1TIUE
C
C FOURE IRANSPORM

CALL HARMK1 Wa.f IN, S. IFSET, IFERR)
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C
C PUT flHE FOUR CORNERS BACK TO THIE CENTRE

D 120 Iinl.N
MD 115 Jw1,N

DTA (N4I-1 ,N+J-1) 4* (I, J)
115 CCT33UE

D 130 1-1.N-l
MD 125 J-1.N-1

125 COTMIE
130 CXRNTDu1E

D 140 I-LN
D 135 J.1.N-1

135 COT1EDATLN1J)4 M(,ENIE-

140 CONTDUE
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C
C FUNCTION: WIH
C ~
C THIS KJNCTIDI WILL CALCULAME THE COSINE UW LASS WEIGHTING
C WITH MhE ASSJMPTIDN 'MAT THE FREUEN4CY RES1tE DTA IS LOCATED
C IN THE KME OF THE RDOT
C
C NCUT- CUT-OFF NUMB9ER FOR THE LOW PASS nMJ' THlE CERM ,

C NX - X-DOORDINATE IN 'THE MSIZE X NSIZE
C NY - Y-MfO1RDINATE 114 THE VlSIZE X MSIZE
C MSIZE- SIZE OF THE ARAY
C

FUNCTION WEIGHT (NCJTUWCX, NY, IEIZE)
CHARACER LP
P1-3.14159265
X-lABS(FLCAT (NX-MSIZE/2-1))
Y-ABS (FLOT CY-4MIZE/2-1))
RADIUSSDR CX**2+Y**2)
IF (RADIUS. LE. FLOAT (NaJT)) WEIGHWNO..5* (1.4+flS (pIRADIUS/FLOAT(NWT)))
IF (RADIUS. GT. FLOAT (N.T)) WEIGH1o.

ED
-I'
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